Document Type : Research Paper

Authors

1 Academic member, Faculty of management, University of Tehran

2 PhD student of financial management, University of Tehran

Abstract

Defaulted loans are biggest challenges in Iranian bank system. One of the major reasons for this phenomenon is the lack of validate scoring systems for loan payment in the banks. The banks can predict default risks of the borrowers, by using these systems.
However, a data base has been established for gathering borrowers' information and providing validates reports in previous years, but, there are defects to use these reports in the bank system comprehensively.
This research aims to design a practical validate scoring model.
We have used the information 290 legal (small and medium size) borrowers in three banks. The results show the suggested model is significant. In addition, the model was tested on the basis the information of another sample of 40 legal borrowers; the results confirmed the before ones.

Keywords

راعی، رضا و علی سعیدی (1383)، مبانی مهندسی مالی و مدیریت ریسک. تهران، سمت.
زندی‌نیا، ابوالفضل (1383)، مروری بر سیستم‌های اعتبارسنجی خودکار، مجله تازه‌های اقتصاد.
تجلی، سیدآیت‏الله (1383) درجه‌بندی اعتباری مشتریان بانک‌ها، مجله بانک و اقتصاد، شماره 68.
سروش، ابوذر و راما روشن‌روان (1385)، رتبه‌بندی اعتباری مشتریان بانک با استفاده از تکنیک‌های داده‌‏کاوی، مجله اقتصاد ایران.
سوری، داوود (1384)، یک مدل سنجش اعتبار برای مشتریان اشخاص حقوقی یک بانک: کاربردی از روش بیزین، تهران، مجموعه مقالات شانزدهمین همایش بانکداری اسلامی.
صفری، علیرضا (1381)، ارتباط نسبت‌های مالی و تداوم فعالیت شرکت‌ها، تهران، پایان‌نامه کارشناسی ارشد دانشکده حسابداری و مدیریت دانشگاه علامه طباطبایی.
فلاح‌پور، سعید (1383)، پیش‌بینی درماندگی مالی شرکت‌ها با استفاده از شبکه‌های عصبی مصنوعی، تهران، پایان‏نامه کارشناسی ارشد دانشکده مدیریت دانشگاه تهران.
Altman, Edward (2006), Corporate Financial Distress and Bankruptcy: Predict and Avoid Bankruptcy, Analyze and Invest in Distressed Debt, New York: John Wiley & Sons Inc, Third edition.
Beaver, William (1966), Financial Ratios as Predictors of Failure, Journal of Accounting Research. No.4.
Chen, Gongyue (2004), Sampling Issues in Credit Scoring: Missing Data Reject Inference and Treatment Effects. University of Waterloo.
Dinh, Thi Huyen & Kleimeier Stefanie. (2007), A Credit Scoring Model for Vietnam`s Retail Banking Market, Journal of International Review of Financial Analysis.No.16.
Emel, Ahmet Burak, Oral, Muhittin., Reisman, Arnold & Yolalan, Reha (2003) A Credit Scoring Approach for the Commercial Banking Sector. Journal of Socio Economic Planning Sciences. No.37.
Hand, D. J & Henley W. E (1997), Statistical Classification Methods in Consumer Credit Scoring: A Review, Journal of Royal Statistical Society. No.160.
Hou, Jiang (2006), A Measurement of the Small Business Credit Gap and the use of Credit Scoring by Small Financial Institutions, University of Kentucky.
Brockenbrough, Karl (2004), A Study of the Usefulness of Financial Ratio Iindicators by Presidents and Chief Financial Officers of Small Institutions within the Council of Independent Colleges and Universities. Wilmington College.
Koh Hian. Chye, Wei Chin, Tan & Goh Peng, Chwee (2004). Credit Scoring using Data Mining Techniques. Singapore Management Review, Vol.26, No.2.
Thomas L.C (2000), A Survey of Credit and Behavioral Scoring: Forecasting Financial Risk of Lending to Consumers. International Journal of Forecasting, Vol.16, No. 2.
Lee, Tian Shyug & Chen, I Fei (2005), A Two Stage Hybrid Credit Scoring Model using Artificial Neural Networks and Multivariate Adaptive Regression. Journal of Expert System with Applications, Vol.28.
Roszbach, Kasper (2004), Bank Lending Policy, Credit Scoring, and the Survival of Loan, The Review of Economics and Statistics.
Tsai, Chih-Fong & Wu, Jhen-Wei (2008), Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring. Journal of Expert System