Document Type : Research Paper

Authors

1 MSc Student in Management, Islamic Azad University – Semnan Branch

2 Associate Professor, Department of Management, Islamic Azad University – Semnan Branch

3 Assistant Professor, Faculty of Management and Accounting, Allameh Tabataba’i University

Abstract

One of the main tasks of the financial institutions is to give loan to the customers. Prediction and evaluation of the credit risks due to loan and consequently managing this risk is one of the greatest ongoing challenges for the financial institutions. The main aim of this work is to provide an optimized logistic regression model for credit scoring of real customers. Here the effects of increasing the customer’s credit classification from two (binary) to four (multinomial) distinct groups on the results of the logistic regression has been investigated. Identification of the most important parameters in prediction of the real customers’ credit scoring is the other important outcome of this work. The results of both binary and multinomial logistic regression show the relative importance of the education level and the age of the customer compared with other independent variables. The results of this work show that either increasing the number of classification types of the dependent variable, real customer’s credit, to four distinct groups has no sharp effect on the results of the optimized models or this conclusion can be due to improper distribution of the number of customers in different groups.

Keywords

البرزی، محمد، محمد‌ابراهیم محمد‌پورزرندی و محمد خان‌بابایی (1389)، »بکارگیری الگوریتم ژنتیک در بهینه‏سازی درختان تصمیم‏گیری برای اعتبارسنجی مشتریان بانک‌ها»، نشریه مدیریت فناوری اطلاعات، 2(4).
محتشمی، عباس (1389)، »اعتبارسنجی مشتریان اعتباری در بانکداری نوین»:
  http://as-mohtashami.blogfa.com/post-49.aspx
مدیرپلاس (1392)، «رگرسیون لجستیک»:
  http://modirplus.com/side_info.php?id=88
مهرآرا، محسن، میثم موسایی،‌مهسا  تصوری و آیت حسن‌زاده (1388)، »رتبه بندی اعتباری مشتریان حقوقی بانک پارسیان»، فصلنامه مدلسازی اقتصادی، 3(10), 121-150.
ویکی‌پدیا، (2015)، »رگرسیون لجستیک»:
 Retrieved from https://fa.wikipedia.org
Abdou, H., A. El-Masry and J. Pointon (2007), “On the Applicability of Credit Scoring Models in Egyption Banks”, Banks and Bank Systems, 2(1), 4-20.
Hand, D., S. Sohn and Y. Kim (2005), “Optimal Bipartite Scorecards”, Expert Systems with Applications, 29(3), 684-690. doi:10.1016/ j.eswa.2005.04.032.
Hand, D. J. and N. M. Adams (2014), “Selection Bias in Credit Scorecard Evaluation”, Journal of the Operational Research Society, 65(3), 408-415. doi:10.1057/jors.2013.55.
Karimi, A. (2014), “Credit Risk Modeling for Commercial Banks”, International Journal of Academic Research in Accounting, Finance and Management Sciences, 4(3), 187-192.
Ong, C., J. Huang and G. Tzeng (2005), “Building Credit Scoring Models Using Genetic Programming”, Expert Systems with Applications, 29(1), 41-47.
doi:10.1016/j.eswa.2005.01.003
SmartDrill , “ Data Mining | Decision Support”,  Retrieved from https://smartdrill.com/
Sustersic, M., D. Mramor and J. Zupan (2009), “Consumer Credit Scoring Models with Limited Data”, Expert Systems with Applications, 36(3), 4736-4744.doi:10.1016/j.eswa.2008.06.016.
Tabagari, S. (2015), “Credit Scoring by Logistic Regression”, (MS), Uuniversity of Tartu.
Torabian, A. and K. Azizi (2013), “Credit Scoring of Real Customers: A Case Study in Saderat Bank of Iran”, European Online Journal of Natural and Social Sciences, 2(3), 2725-2735.  Retrieved from www.european-science.com.