Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Economics, University of Isfahan, Isfahan, Iran

2 Professor, Department of Economics, University of Isfahan, Isfahan, Iran

3 Associate Professor, Department of Economics, University of Shiraz, Shiraz, Iran

Abstract

The significance of tax revenue as the primary source of government finance underscores the importance of accurately measuring tax efforts using unbiased methodologies. This study employs a state-space model and the Kalman filter algorithm to estimate tax effort as an unobservable variable within the tax revenue equation in Iran from 1970 to 2021.The findings reveal a nuanced relationship between various factors and the tax ratio. Per capita income exhibits a positive impact, while the agriculture share in GDP exerts a negative influence. Interestingly, the coefficients of openness and monetization initially have negative elasticity but transition to positive after reaching a certain threshold, indicating a dynamic relationship with the tax ratio. Conversely, the services and industry share in GDP demonstrate a positive effect on the tax ratio before reaching a peak, after which their squared coefficients turn negative.Tax effort in Iran, throughout the studied period, has never been more than 0.25 highlighting a significant disparity between actual and potential tax revenue and underscores inefficiencies within the tax system.

Introduction

Due to dependence on oil and structural problems, attention to important tax indexes has been neglected in Iran’s Economy. Therefore, in order to achieve more accurate results, a new approach has been taken by the research to estimate tax effort as an indicator that shows the ability of the government to enhance tax revenues.
Traditionally, tax effort is calculated by dividing actual tax revenue by potential tax revenue. However, this method is inherently biased as it fails to account for the influence of economic, social, and political factors on tax revenue collection, alongside tax effort itself. To address this limitation, the study employs the Kalman Filter estimation technique, which treats tax effort as an unobservable variable within the tax revenue function, alongside other economic variables.

Methods and Material

In literature, tax effort is calculated by estimating the following equation:




 
(1)


F1 =  =   =




where T is tax share, F is tax effort, Z is a vector of other factors affecting tax share and ω is an error term. It is evident that the estimator F1 is a biased estimator for tax effort F. Considering the effect of tax effort on tax revenue, the index should be included as a dependent variable in the tax revenue function. Referring to the study of Kim (2007) and in order to overcome the bias, the research suggests a state-space approach and Kalman Filter Algorithm. The structural time series method allows tax effort to be taken into consideration in the tax revenue function as an unobservable variable.
In this context, the tax revenue function considered a linear form incorporating variables such as per capita income, the share of agriculture, services and industry, openness, and monetization . However due to the low coefficient of determination and the results of Ramsey Reset test, adopting a quadratic function  became imperative. Consequently,the final equation was changed as follows:




 


(3)





Results and Discussion

In econometric analysis, the  stationary test of data typically examined. However, According to Harvey, the stationary test holds less signifcance in the structural time series model.. The analysis of variables confirms that all variables exibite statistical normality. The results of estimating equation 3 are reported in Table 1, which shows that the variables are significant at one percent level.
Table 1. The results of estimating the square function of tax revenue using the STSM method




Prob


t-statistic


RMSE


Coefficients


Variables




0.0090


-2.7836


0.0647


-0.1801


Level break 1998




0.0000


5.3930


0.0586


0.3159


Level break 2005




0.0000


-5.8246


0.0569


-0.3314


Level break 2000




0.0000


6.4744


0.9254


5.9920


LPY




0.0000


-6.0820


0.0611


-0.3719


LPY^2




0.0031


-3.2082


2.4578


-7.8851


LMO




0.0030


3.2130


0.2998


0.9631


LMO^2




0.0449


-2.0900


0.5520


-1.1536


LOP




0.0626


1.9312


0.0766


0.1480


LOP^2




0.0000


5.9359


3.2214


19.1223


LIND




0.0000


-6.1448


0.4668


-2.8682


LIND^2




0.0007


3.7434


7.1427


26.7385


LSEV




0.0004


-3.9563


0.8990


-3.5566


LSEV^2




0.0106


-2.7203


0.1102


-0.2997


LAGR




Reference: Research calculations and software output
There were breaks in 1998, 2000, and 2005. The cause of these breaks can be attributed to the Asian financial crisis, the dot-com bubble, and oil fever, respectively.
"In addition to examining elasticities, the squared coefficients of variables hold significance in the analysis. Despite the elasticity of the agricultural sector share being -0.29, its squared coefficient was omitted from the model due to its low explanatory power. Notably, the tax exemption status of the agricultural sector in Iran contributes to a negative impact on tax revenues.
Regarding per capita income, its elasticity is positive, yet its squared coefficient is negative. Initially, an increase in per capita income enhances tax revenues, but subsequently leads to a decline in the tax ratio. This phenomenon arises because governments can only collect a specific portion of per capita income as taxes. Continued taxation may result in taxpayer resistance, consequently leading to a reduction in tax revenue.".
The share of industry and services, both, have negative elasticity and squared coefficient. Initially, an increase in these variables leads to a rise in tax revenue, followed by a subsequent decrease where the negative effect predominates. Notably, only in cases where production is efficient, the industry can generate a significant taxable surplus.  Therefore, the inefficient industry sector will not result in higher tax revenue in Iran.
Due to the lack of a full database and since some economic activities in Iran are unregistered and consequently untraceable, a significant percentage of tax evasion occurs in the services sector. Hereupon, the increase of this sector in Iran will not lead to more tax revenue.
Both openness and monetization exibit positive quadratic coefficients. The effect of these variables on the tax ratio is negative at first and becomes positive after the minimum point. The negative elasticity of these two variables is respectively caused by the government's policies such as lower tariffs for essential goods and the adverse effects of inflation on monetization and tax revenue as a result.
The tax effort trend is shown in Figure 1. The unevenness of the trend is caused by the fluctuation in oil revenues in Iran. Tax effort in the last 50 years has always been lower than 0.25, which indicates the misutilization of tax capacities.
Figure 1. Tax Effort Trend in Iran during the years 1970-2021
 
Reference: Research Findings

Conclusion

Recognizing the significance of taxes as a primary source of government revenue, this research employs the Kalman Filter algorithm and a state-space model to calculate tax effort in a novel manner. In this approach, tax effort, treated as an unobservable variable, is incorporated into the tax revenue function alongside six other variables. Given the low coefficient of determination and the outcomes of the Ramsey reset test, the linear model was deemed unsuitable. Consequently, the quadratic form of the function was adopted to better capture the complex relationship between tax effort and tax revenue."The estimations showed that the effect of per capita income on tax ratio is positive due to the increase in the potential of citizens to pay taxes, and the impact of agriculture share is negative due to tax exemptions.
The elasticity of monetization is negative owing to high inflation in Iran and its adverse effects on sales tax. The effect of this variable on tax ratio is initially negative, but after the minimum point, it becomes positive due to the compliance of taxpayers with inflationary conditions. Openness also has a negative elasticity due to the negative effect of import promotion policies. The share of industry and services have a positive effect on the dependent variable before reaching the maximum point. However, due to a high rate of tax evasion within this sector and production inefficiency in manufacturing, this effect reverses after surpassing the maximum point..
The discrepancy in the signs of the elasticities for some variables can be attributed to utilization of  different approaches in estimating the tax effort. The low tax effort in Iran reveals the necessity to make changes in government tax policies to make the most of tax capacities.
For the purpose of enhancing tax revenue, some measures should be taken to reduce tax evasion and increase the tax potential of economic sectors. Eliminating unnecessary tax exemptions can also improve tax performance. The exemptions should be gradually phased out until they are completely eliminated,as long-term tax exemptions in Iran create non-competitive structures.

Keywords

آماده، حمید. مهرگان، نادر. حقانی، محمود و حداد، میثم. (1392). برآورد تابع تقاضای نفت گاز در بخش کشاورزی ایران با رویکرد سری زمانی ساختاری. پژوهشنامه اقتصادی، 13(51)، 80-53.
امین رشتی، نارسیس. فهیمی فر، فاطمه و صیامی عراقی، ابراهیم. (1390). اندازه گیری تلاش مالیاتی (مطالعه موردی کشورهای دارای درآمد متوسط). پژوهشنامه مالیات، دوره جدید-19(10(مسلسل 58))، 75-96.
ایمانی برندق، محمد. پیری، پرویز و قربانی، توفیق. (1395). بررسی عوامل موثر بر کیفیت مالیات در ایران با استفاده از رویکرد سلسله مراتبی. پژوهش های تجربی حسابداری، 6 (2)، 63-47.
پژویان، جمشید و درویشی، باقر. (1389). اصلاحات ساختاری در نظام مالیاتی ایران. پژوهشنامه مالیات، دوره جدید - 18(8 (مسلسل 56))، 47-9.
پناهی، حسین. فلاحی، فیروز و مردم دار، سجاد. (1396). مقایسه اثر حکمرانی خوب بر درآمدهای مالیاتی در کشورهای در حال توسعه و توسعه یافته. تحلیل های اقتصادی توسعه ایران، 5(1)، 99-81.
تمیزی، علیرضا. (1397). بررسی عوامل تعیین‌کننده درآمدهای مالیاتی در ایران: رویکرد اقتصادسنجی بیزینی. اقتصاد مقداری، 15(1)، 225-244.‎
خدابخشی، اکبر و یارمحمدی، زهرا. (1401). بررسی ظرفیت و کوشش مالیاتی در شرایط GDP با نفت و بدون نفت در ایران. مطالعات اقتصاد بخش عمومی، 1(1)، 1-22.‎
زراءنژاد، منصور. تبعه‌ایزدی، امین و حسین‌پور فاطمه .(1393). بررسی و اندازه‌گیری تاثیر درآمدهای نفتی بر درآمدهای مالیاتی در ایران. پژوهشنامه بازرگانی. 18(27)، 137-111.
شاکری، عباس. محمدی، تیمور. جهانگرد، اسفندیار و موسوی، میرحسین. (1389). تخمین مدل ساختاری تقاضای بنزین و نفت گاز در بخش حمل و نقل ایران.‎ مطالعات اقتصاد انرژی، 7(25)، 31-1.
عرب‌مازار، علی‌اکبر .(1398). تلاش مالیاتی. دانشنامه اقتصاد. 2(2)، 1-1.
عزیزیان، محمدحسین. (1402). بررسی لایحه بودجه سال 1402 کل کشور (11): درآمدهای مالیاتی.‎ مرکز پژوهش‌های مجلس.
قطمیری، محمدعلی و اسلاملوییان، کریم. (1387). برآورد تلاش مالیاتی در ایران و مقایسة آن با کشورهای در حال توسعة منتخب. تحقیقات اقتصادی، 43(2)، 186-163.
کریمی موغاری، زهرا و غلامرضا، مهرانگیز. (1397). تأثیر شاخص‌های توسعه بر درآمدهای مالیاتی ایران (با رویکرد هم‌انباشتگی). پژوهش‌های رشد و توسعه اقتصادی. 9(33). 182-157.
گرایی‌نژاد، علیرضا و چپردار، الهه (1391). بررسی عوامل موثر بر درآمدهای مالیاتی در ایران. اقتصاد مالی (اقتصاد مالی و توسعه)، 6(20)، 69-92.
محمدی شیرکلایی، محمدزمان. جعفری صمیمی، احمد. کریمی پتانلار، سعید و طهرانچیان، امیرمنصور. (1396). مطالعه تأثیر جهانی شدن بر ظرفیت و تلاش مالیاتی در کشورهای منتخب با رویکرد مدل رگرسیون داده‌های تابلویی آستانه‌ای (PSTR). پژوهشنامه اقتصاد کلان، 11(22)، 183-159.
محمدی، تیمور. خورسندی، مرتضی و امیرمعینی، مهران. (1393). مدل‌سازی تقاضای برق در بخش صنعت ایران:رویکرد مدل سری زمانی ساختاری. تحقیقات مدل‌سازی اقتصادی، 5(18)، 117-87.
مشمول، نیلوفر. نوبهار، الهام و پورعبادالهان کویچ، محسن. (1401). بررسی میزان اثرگذاری عوامل تعیین کننده درآمدهای مالیاتی در استان های ایران: رهیافت پانل فضایی. نظریه های کاربردی اقتصاد، 9(2 )، 122-191.
موسوی جهرمی، یگانه و زائر، آیت .(1387). مقایسه عملکرد دو مدل تصمیم گیری با معیارهای چندگانه مطالعه موردی: رتبه بندی استانهای کشور بر اساس عوامل تاثیرگذار بر ظرفیت مالیاتی. پژوهشنامه اقتصادی - (4 (ویژه نامه طرح تعدیل اقتصادی))، 15-44.
موسوی جهرمی، یگانه. مهرآرا، محسن و توتونچی ملکی، سعید .(1399). ارزیابی مهم‌ترین عوامل مؤثر بر درآمد مالیات‌های مستقیم در اقتصاد ایران با رویکرد مدل‌های TVP-DMA و TVP- FAVAR. . فصلنامه مطالعات اقتصادی کاربردی ایران. 9(34)، 75-39.
Amadeh, H., Mehregan, N., Haghani, M. & Hadad, M. (2013). Estimation of Gas Oil Demand Function in Iranian Agriculture Sector Using Structural Time Series Approach. Economics Research, 13(51), 53-80.  [In Persia]
Aminrashti N, Fahimifar F, Siamiaraghi E. (2011) Measuring Tax Effort (A Case Study of the Middle- Income Countries). J Tax Res 2011; 19 (10) :75-96. [In Persian]
Amirmoeini M, Mohammadi T, Khorsandi M. (2014) Modeling Electricity Demand in the Industrial Sector in Iran: An Structural Time Series Model. The Journal of Economic Modeling Research (JEMR), 5 (18), 87-117. [In Persian]
Arabmazar, A. (2019). Tax Effort. Encyclopedia of Economics, 2(2), 1-1. [In Persian]
Ayenew, W. (2016). Determinants of tax revenue in Ethiopia (Johansen co-integration approach). International Journal of Business, Economics and Management, 3(6), 69-84.
Bahl, R. W. (1971). A Regression Approach to Tax Effort and Tax Ratio Analysis (Analyse de l'effort et de la pression fiscale par la méthode de régression) (Un estudio del esfuerzo tributario y de la presión fiscal mediante el análisis de regresión). Staff Papers-International Monetary Fund, 570-612.
Bornhorst, F., Gupta, S. & Thornton, J. (2009). Natural resource endowments and the domestic revenue effort. European Journal of Political Economy, 25(4), 439-446.
Brun, J. F. & Diakite, M. (2016). Tax potential and tax effort: An empirical estimation for non-resource tax revenue and VAT’s revenue.
Chettri, K. K., Bhattarai, J. K. & Gautam, R. (2023). Determinants of Tax Revenue in South Asian Countries. Global Business Review, 09721509231177784.
Dalamagas, B., Palaios, P. & Tantos, S. (2019). A new approach to measuring tax effort. Economies, 7(3), 77.
Geraeinezhad, GH. & Chapardar, E. (2012). A Survey on the Determinants of Tax Revenue in Iran. Financial Economics, 6(20), 69-92. [In Persian]
Ghetmiri, M. A. & Eslamlouian, K. (2008). Tax Effort in Iran in Comparison with Selected Developing Countries. Journal of Economic Research (Tahghighat- E- Eghtesadi), 43(2), 163-186. [In Persian]
Harvey, A. C. & Fernandes, C. (1989). Time series models for count or qualitative observations. Journal of Business & Economic Statistics, 7(4), 407-417.
 Hinrichs, H. H. (1965). Determinants of government revenue shares among less-developed countries. The Economic Journal, 75(299), 546-556.
Imani Barandagh, M., Piri, P. & ghorbani, T. (2016). Analysis of Factors Affecting Tax Quality Based on Analytical Hierarchy Process (AHP). Empirical Research in Accounting, 6(2), 47-63. [In Persian]
Karimi Moughari, Z. & Gholamreza, M. (2018). Influence of Development Indicators on the Tax Revenues of Iran (Co-integration Approach). Economic Growth and Development Research, 9(33), 157-182. [In Persian]
Keen, M. & Simone, A. (2004). Tax policy in developing countries: some lessons from the 1990s and some challenges ahead. Helping countries develop: The role of fiscal policy, 10(4), 720-722.
Khodabakhshi, A. & Yarmohammadi, Z. (2022). Investigating the Capacity and Tax Effort in Terms of GDP with Oil and without Oil in Iran. Public Sector Economics Studies, 1 (1), 1-22. [In Persian]
Kim, S. (2007). A more accurate measurement of tax effort. Applied Economics Letters, 14(7), 539-543.
Le, T. M., Moreno-Dodson, B. & Bayraktar, N. (2012). Tax capacity and tax effort: Extended cross-country analysis from 1994 to 2009. World Bank Policy Research Working Paper, (6252).
Lotz, J. R. & Morss, E. R. (1970). A theory of tax level determinants for developing countries. Economic Development and cultural change, 18(3), 328-341.
Mahdavi, S. (2008). The level and composition of tax revenue in developing countries: Evidence from unbalanced panel data. International Review of Economics & Finance, 17(4), 607-617.
Minh Ha, N., Tan Minh, P. & Binh, Q. M. Q. (2022). The determinants of tax revenue: A study of Southeast Asia. Cogent Economics & Finance, 10(1), 2026660.
Mohammadi Shirkolaei, M. Z., Jafari Samimi, A., Karimi Potanlar, S. & Tehranchian, A. M. (2016). The Effect of Globalization on Tax Capacity and Tax Effort in Selected Countries: Panel Threshold Model Approach. Macroeconomics Research Letter, 11(22), 159-183. [In Persian]
Mousavi Jahromi, Y. & Zayer, A. (2008). Comparison of the performance of two decision-making models with multiple criteria Case study: Ranking of the country's provinces based on factors affecting tax capacity. Journal of Economics, 8(4), 15-44. [In Persian]
Mousavi jahromi, Y., mehrara, M. & Totonchi, S. (2020). Evaluating the Most Important Factors Effecting Direct Taxes in Iranian Economy with TVP-DMA and TVP-FAVAR Models Approach. Journal of Applied Economics Studies in Iran, 9(34), 39-75. [In Persian]
Nobahar, E., Pourebadollahan Covich, M. & Mashmul, N. (2022). Investigating the Effectiveness of Determinant Factors of Tax Revenues in Iranian Provinces: A Spatial Panel Approach. Quarterly Journal of Applied Theories of Economics, 9(2), 191-222. [In Persian]
Pajooyan, J. & Darvishi, B. (2010). The Structural Reforms in Iran’s Tax System. Journal of Tax Research, 18(8), 9-48. [In Persian]
Panahi, H., Fallahi, F. & Mardomdar, S. (2017). Comparison of the Effect of Good Governance on Tax Revenues in Developing and Developed Countries. Iranian Economic Development Analyses, 5(1), 81-99. [In Persian]
Piancastelli, M. & Thirlwall, A. P. (2021). The determinants of tax revenue and tax effort in developed and developing countries: theory and new evidence 1996-2015. Nova Economia, 30, 871-892.
Piancastelli, M. (2001). Measuring the tax effort of developed and developing countries: Cross country panel data analysis-1985/95.
Saptono¹, P. B. & Mahmud, G. (2021). Macroeconomic determinants of tax revenue and tax effort in Southeast Asian countries.
Sen Gupta, A. (2007). Determinants of tax revenue efforts in developing countries.
Shakeri, A., Mohammadi, T. & Jahangard, E. (2010). Quarterly Energy Economics Review, 7 (25), 1-31. [In Persian]
Tamizi, A. R. (2018). Investigating determinants of tax revenues in Iran: A Bayesian Econometric Approach. Quarterly Journal of Quantitative Economics, 15(1), 225-244. [In Persian]
Teera, J. M., Hudson, J. (2004). Tax performance: a comparative study. Journal of international development, 16(6), 785-802.
zarra nezhad, M., tabae izadi, A. & hosseinpour, F. (2014). Measurement and Analysis of Oil Revenues Effect on Tax Revenues in Iran. Iranian Journal of Trade Studies, 18(72), 111-137.