Document Type : Research Paper

Authors

1 PhD Student in Monetary Economics, Allameh Tabataba’i University, Tehran

2 Assistant Professor, Faculty of Economics, Allameh Tabataba’i University, Tehran

3 Professor, Faculty of Economics, Allameh Tabataba’i University, Tehran

Abstract

First studies in inflation forecasting were mostly based on traditional Philips curve in which the relation between inflation and unemployment is studied. However, after several decades and especially after the Lucas criticism, Philips curve faced great takeovers. The new Philips curve ties real and expected inflation, not to unemployment rate but to a scale of the marginal cost. Since in the original form of Philips curve, marginal cost stimulates inflation, it is difficult to formulate models that are effective in predicting inflation. Therefore, using TVP-DMA model, which has the ability to fix these deficiencies, we try to improve predictability of inflation in Iranian economy. An independent variable in conventional models can be either significant or insignificant while in TVP-DMA model, it may be significant during a period of time and insignificant in rest of the times. Therefore, this approach lets us to determine the periods in which an independent variable is significant and when it is not. In this study, we use seasonal data during the period 1991-2015. The results based on outputs of the TVP, DMS, and DMA models show that, out of 100 time periods under study, the liquidity growth rate in 19, economic growth rate in 7, unemployment in 8, exchange rate growth in 31, changes in the bank deposit rate in 14, oil revenues growth rate in 15, inflation uncertainty in 14 and the budget deficit growth rate in 4 periods have significant effect on inflation. Based on these results, it can be stated that exchange rate growth, liquidity growth and oil revenues growth rate are the most important indicators influencing inflation rate in Iran.

Keywords

توکلیان، حسین (1391)، «بررسی منحنی فیلیپس کینزی جدید در قالب یک مدل تعادل عمومی پویای تصادفی برای ایران»، مجله تحقیقات اقتصادی، شماره 47، صص 1-22.
جعفری صمیمی، احمد و صدیقه قلی‌زاده کناری (1386)، «بررسی رابطه تورم و رشد اقتصادی در کشورهای در حال توسعه»، مجله نامه اقتصادی، شماره 63، صص 45-58.
حسینی نسب، ابراهیم و مهدیه رضا قلی‌زاده (1389)، «بررسی ریشه‌های مالی تورم در ایران (با تاکید بر کسری بودجه)»، فصلنامه پژوهش‌های اقتصادی، سال دهم، شماره 1، صص 43-70.
حسینی، صفدر و حیدر قلی‌زاده (1389)، «بررسی تورم و بیکاری در اقتصاد ایران»، فصلنامه پژوهش‌های اقتصادی ایران، سال چهاردهم، شماره ۴۳، صص 23-54.
درگاهی، حسن و رویا شربت اوغلی (1389)، «تعیین قاعده سیاست پولی در شر ایط تورم پایدار اقتصاد ایران با استفاده از روش کنترل بهینه»، مجله تحقیقات اقتصادی، شماره 45، صص 1-27.
سحابی، بهرام، سیروس سلیمانی، سمیه خضری، محسن خضری (1392)، «اثرات رشد نقدینگی بر تورم در اقتصاد ایران: مدل‌های تغییر رژیم»، راهبرد اقتصادی، دوره 2، شماره4، صص121-146.
جلالی نائینی، سید احمدرضا و محمدرضا میرحسینی (1377)، «یک الگوی تلفیقی تورم: فشار هزینه و اضافه تقاضا»، برنامه و بودجه، شماره 34 و 35، صص 91-105.
شهاب، محمد رضا (1386)، نرخ‌های ارز و تورم: یک تحلیل تجربی درباره ایران، پایان نامه کارشناسی ارشد، دانشکده علوم انسانی، گروه علوم اقتصادی.
 صمدی، علی حسین و شراره مجدزاده طباطبایی (1392)، «رابطه بین تورم و نااطمینانی تورمی در ایران با استفاده از رگرسیون چرخشی مارکوف»، فصلنامه مدلسازی اقتصادی، سال هفتم، شماره 23، صص 47-65.
کمیجانی اکبر و یزدان نقدی (1388)، «بررسی ارتباط متقابل بین تولید و تورم در اقتصاد ایران (با تاکید بر تولید بخشی)»، پژوهشنامه علوم اقتصادی، سال نهم، شماره 32، صص 99-124.
کمیجانی، اکبر و حسین توکلیان (1390)، «بررسی عدم تقارن در رفتار سیاستگذاری پولی بانک مرکزی (مورد ایران)»، مجله تحقیقات مدلسازی اقتصادی، شماره 6، صص 19-42.
محسن خضری؛ بهرام سحابی؛ کاظم یاوری؛ حسن حیدری (1394)، اثر بازده بخش سوداگری بر تورم در اقتصاد ایران: مدل TVP-FAVAR»، پژوهشنامه اقتصادی، مقاله 7، دوره 15، شماره 57، صفحه 193-228.
محبی آشتیانی، علیرضا (1391)؛ بررسی تاثیر انحراف  نرخ ارز بر صادرات غیرنفتی، پایان‌نامه کارشناسی ارشد، دانشگاه علامه طباطبائی.
Bernanke, B., J. Boivi and P. Eliasz. (2005), “Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach”, Quarterly Journal of Economics, Vol. 120, No. 1, pp. 387-422.
Boivin, J. and S. Ng (2006), “Are More Data Always Better for Factor Analysis?”,Journal of Econometrics, Vol. 132, pp. 169-194.
Cogley, T. and T. Sargent (2005), “Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII U. S.”, Review of Economic Dynamics, Vol. 8, pp. 262-302.
Cogley, T., S. Morozov and T. Sargent (2005), “Bayesian Fan Charts for U. K. in. ation: Forecasting and Sources of Uncertainty in an Evolving Monetary System”, Journal of Economic Dynamics and Control, Vol. 29, pp. 1893-1925.
Dave, C. and S. Dressler. (2009), “The Bank Lending Channel: A FAVAR Analysis”, Villanova School of Business Economics Working Paper, No.4
Del Negro, M. and C. Otrok, (2008), “Dynamic Factor Models with Time-varying Parameters: Measuring Changes in International Business Cycles”. University of Missouri Manuscript.
Doz, C., D. Giannone and L. Reichlin (2011), “A Two-step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering”, Journal of Econometrics, Vol. 164, pp 188-205.
Edward, N., D. Gambera and R. Hakesb (2005), “Is Monetary Policy Important for Forecasting Real Growth and Inflation?”, Journal of Policy Modeling, Vol. 27, pp. 177–187.
Eickmeier, S., W. Lemke and M. Marcellino (2011), “The Changing International Transmission of Financial Shocks: Evidence from a Classical Time-varying FAVAR”, Deutsche Bundesbank, iscussion Paper Series 1: Economic Studies, No 05/2011.
Friedman, Milton (1981), “Dificit and Inflation”, Newsweek, Feb. 23, P: 44.
Friedman, B. M. (1978), “Growding out or Growding in?Economic Consequences of Financing Government deficits”, Brookings Papers on Economic Activity, No: 3, PP: 593-641.
Friedman, M. (1968), “The Role of Monetary PoDlicy”, American Economic Review, Vol: 58, PP: 1-17.
Friedman, M. (1977), “Nobel lecture: Inflation and Unemployment”, Journal of Political Economy, Vol. 85, pp. 451–472.
Fruhwirth-Schnatter, S. (2006), Finite Mixture and Markov Switching Models, New York: Springer
Garratta, A., J. Mitchellb and P. Shaun (2011), “Real-time Inflation Forecast Densities from Ensemble Phillips curves”, North AmericanJournal of Economics and Finance, Vol. 22, pp. 78-88.
Geweke, J. and G. Amisano, (2010), “Hierarchical Markov Normal Mixture Models with Appli-cations to Financial Asset Returns”,. Journal of Applied Econometrics forthcoming, Vol. 26, pp. 1-29.
Groen, J., R. Paap and F. Ravazzolo (2009), “Real-time Inflation Forecasting in a Changing World”, Econometric Institute Report 2009-19, Erasmus University Rotterdam,
Henry, O. (2009), “Regime Switching in the Relationship between Equity Returns and Short-term Interest Rates”, Journal of Banking and Finance, Vol. 33, pp. 405–414.
Hoogerheide, L., R. Kleijn, F. Ravazzolo, H. van Dijk and M. Verbeek, (2009(, “Forecast Ac-curacy and Economic Gains from BayesianModel Averaging Using Time-VaryingWeights”, Journal of Forecasting, Vol. 29, pp. 251-269.
Hornstein, A. (2008). “Introduction to the New Keynesian Phillips Curve”. Economic Quarterly, Vol. 94, pp. 301-309.
Hwang, Y. (2007), “Causality between Inflation and Real Growth,” Economics Letters, Vol. 94, pp.146–153.
Jouchi Nakajima, J., K. Munehisa and W. Toshiaki (2009), “Bayesian Analysis of Time-varying Parameter Vector Autoregressive Model for the Japanese Economy and Monetary Policy”, Journal of The Japanese and International Economies, Vol. 25, pp. 225-245.
Karunaratne, N. D. and R. Bhar (2011), “Regime-shifts and Post-float Inflation Dynamics of Australia”,.Economic Modelling, Vol. 28, pp. 1941–1949.
King, R. G. (2008), “The Phillips Curve and U. S. Macroeconomic Policy: Snapshots, 1958-1996”, Economic Quarterly, Vol. 94, pp. 311-359.
Koop, G. and D. Korobilis (2011), “Forecasting Inflation using Dynamic Model Averaging”, International Economic Review, Vol. 53, pp. 867-886.
 Koop, G. and D. Korobilis, (2013), “A New Index of Financial Conditions”, European Economic Review, Vol. 71, pp. 101-116.
Koop, G., R. Leon-Gonzalez and R. Strachan (2009). “On the Evolution of the Monetary Policy Transmission Mechanism”, Journal of Economic Dynamics and Control, Vol. 33, pp. 997-1017.
Korobilis, D. (2009), “Assessing the Transmission of Monetary Policy Shocks Using Dynamic Factor Models”, Discussion Paper 9-14, University of Strathclyde.
Korobilis, D. (2013), “Assessing the Transmission of Monetary Policy Shocks Using Time-varying Parameter Dynamic Factor Models”, Oxford Bulletin of Economics and Statistics, Vol. 75, pp. 157-179.
Lee, j. Dong, Yoonb, H. Jai. (2016). ” The New Keynesian Phillips Curve in multiple quantiles and the asymmetry of monetary policy “. Economic Modelling, Vol 55, PP 102–114.
Moser, S. and F. Rumler (2005), “Forecasting Austrian Inflation,” Economic Modeling, Vol. 24, pp. 470–480.
Mumtaz, H. (2010), “volving UK Macroeconomic Dynamics: A Time-Varying Factor Augmented VAR”, Bank of England, Working Paper, No. 386 March
Nakajima, J., Kasuya, Munehisa and W. Toshiaki (2011), “Bayesian Analysis of Time-varying Parameter Vector Autoregressive Model for the Japanese Economy and Monetary Policy”, Journal of The Japanese and International Economies, Vol. 25, pp. 225-245.
Öğünç, F., Akdoğan, K., Başer, S., Chadwick, M.G., Ertuğ, T., Hülagü, D., Kösem, S., Özmen M.U., & Tekatlı, N. (2013). Short-term inflation forecasting models for Turkey and a forecast combination analysis. Economic Modelling, 33, 312–325.
Primiceri. G. (2005), “Time Varying Structural Vector Auto regressions and Monetary Policy”, Review of Economic Studies, Vol. 72, pp. 821-852.
Pourgerami, A., and K. Maskus (1987), “The effects of inflation on the predictability of price changes in Latin America: some estimates and policy implications”,World Development, 15,287-290.
Raftery, A., M. Karny and P. Ettler (2010), “Online Prediction Under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill”, Technimetrics, Vol. 52, pp. 52-66.
Senbet, D. (2008), “Measuring the Impact and International Transmission of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach”, European Journal of Economics, Finance and Administrative Sciences, Vol. 13, pp. 121-143.
Stock, J. and M. Watson (2007), “Why Has U. S. Inflation Become Harder to Forecast?”, Journal of Monetary Credit and Banking, Vol. 39, pp. 3-33.
Stock, J. and M.Watson (2008), “Phillips Curve Inflation Forecasts”, NBER Working Paper, No. 14322, 2008.
Xu, Q; Niu, X; Jiang, C & Huang, X. (2015). “The Philips curve in the USA:A nonlinear quantile regression approach”. Economic Modeling 49.186-197.