Document Type : Research Paper

Authors

1 Assistant Professor, Faculty of Economics, Allameh Tabataba’i University,

2 Associate professor, Faculty of Economics, Allameh Tabataba’i University

3 PhD Student in Financial Economics, Faculty of Economics, Allameh Tabataba’i University

Abstract

Researches in housing sector show that the effect of various economic factors on housing prices might be different in separate areas of a country and housing prices in different regions of the country have internal connections with each other. Modelling of these effects is done in the form of spatial Econometrics. In this study, data related to 28 provinces of Iran during the period 2000 -2013 is used to estimate and compare the dynamic spatial SDM panel models with spatial SDM panel models and also to estimate the direct and indirect effects (space overflows) related to the explanatory variables in both the short and long term by using population spatial weight matrix in Matlab software. In order to choose the best spatial pattern consistent with the theoretical model of housing price determination, we have used Elhorst methodology and at every step, Likelihood ratio test (LR) and Lagrange multipliers tests (LM) are used to compare the spatial patterns. We found out that dynamic spatial model shows the best specification. By comparing the results of the dynamic spatial panel models, lagged housing price variable and spatial effects of this variable have a significant role in determining house prices. The results also show that only the spatial effects of household spending variable have a significant effect on housing prices and other variables such as land price, construction costs, rental housing prices, have significant effect on housing prices in the provinces of Iran both directly and in the form of space overflow effects.

Keywords

بانک مرکزی جمهوری اسلامی ایران، اداره کل آمارهای اقتصادی (1392-1379)، نتایج بررسی فعالیت‌های ساختمانی در مناطق شهری استان‌های کشور.
بانک مرکزی جمهوری اسلامی ایران،اداره کل آمارهای اقتصادی(1392-1379)، گزارش اوضاع اقتصادی و اجتماعی استان‌های (شهرستان‌های) کشور.
بانک مرکزی جمهوری اسلامی ایران، پایگاه اطلاع‌رسانی www.cbi.ir .
خلیلی‌عراقی سید منصور، محسن مهرآرا و سید رضا عظیمی (1391)، «بررسی عوامل موثر بر قیمت مسکن در ایران با استفاده از داده‌های تابلویی»، فصلنامه پژوهشها و سیاستهای اقتصادی، 63، 33–50.
خلیلی‌عراقی، سید منصور، اکبر کمیجانی، محسن مهرآرا، سید رضا عظیمی (1392)، «اثر انتشار فضایی تغییرات قیمت مسکن در ایران با استفاده از مدل وقفه ‌فضایی و داده‌های ترکیبی»، فصلنامه پژوهشها و سیاستهای اقتصادی، 67، 25–48.
صوفی، سیاوش و سروش (1387)، «تعیین مشخصه‌های اصلی تقاضای مسکن در مناطق ایران»، پایان‌نامه کارشناسی ارشد رشته مهندسی سیستم‌های اقتصادی-اجتماعی، موسسه عالی آموزش و پژوهش مدیریت و برنامه‌ریزی.
فروغی و  فرهمند (1390)، «تحلیل فضایی عوامل موثر بر قیمت مسکن در ایران»، سومین کنفرانس برنامه‌ریزی و مدیریت شهری.
قلی‌زاده، علی‌اکبر (1387)، نظریه قیمت‌گذاری مسکن در ایران، همدان: انتشارات نور علم.
درودیان، حسین، محمود متوسلی و شاپور محمدی (1389)، «تحلیل تسری نوسانات قیمت مسکن بین مناطق مختلف شهر تهران با استفاده از الگوی خودرگرسیون فضایی تلفیقی (SAR Panel)  و الگوی تصیح‌خطای برداری (VECM)»،  فصلنامه پژوهشهای اقتصادی، اول (بهار 1389)، 113–131.
مرکز آمار ایران (1392-1379)، نتایج آمارگیری از هزینه و درآمد خانوارهای شهری.
مرکز آمار ایران (1392-1379)، سالنامه آماری استان‌ها.
وصاف، اسماعیل(1387)، «بررسی نظام فضایی قیمت شهری: رهیافت تابع قیمت هدانیک (مطالعه موردی: شهر مشهد)»، پایان‌نامه کارشناسی ارشد اقتصاد، دانشکده‌ اقتصاد دانشگاه علامه طباطبائی 1387.
Baltagi, B. (2008), Econometric Analysis of Panel Data, John Wiley \and Sons.
Baltagi, B. H., and G. Bresson (2011), “Maximum Likelihood Estimation and Lagrange Multiplier Tests for Panel Seemingly Unrelated Regressions with Spatial Lag and Spatial Errors: An Application to Hedonic Housing prices in Paris”, Journal of Urban Economics, 69(1), 24–42. https://doi.org/10.1016/j.jue.2010.08.007
Baltagi, B. H., S. Heun Song, B. Cheol Jung and W. Koh (2007), “Testing for Serial Correlation, Spatial Autocorrelation and Random Effects Using Panel Data”, Journal of Econometrics, 140(1), 5–51. https://doi.org/10.1016/j.jeconom.2006.09.001
Beenstock, M., and D. Felsenstein (2010), “Spatial Error Correction and Cointegration in Nonstationary Panel Data: Regional House Prices in Israel”, Journal of Geographical Systems, 12(2), 189–206. https://doi.org/10.1007/s10109-010-0114-8
Behrens, K., and J. F. Thisse (2007), “Regional Economics: A new Economic Geography Perspective”, Regional Science and Urban Economics, 37(4), 457–465. https://doi.org/10.1016/j.regsciurbeco.2006.10.001
Berg, L. (2002), “Prices on the Second-hand Market for Swedish Family Houses: Correlation, Causation and Determinants”, European Journal of Housing Policy, 2(1), 1–24. https://doi.org/10.1080/14616710110120568
Boarnet, M. G., S. Chalermpong, and E. Geho (2005), “Specification Issues in Models of Population and Employment Growth”, Papers in Regional Science, 84(1), 21–46. https://doi.org/10.1111/j.1435-5957.2005.00002.x
Debarsy, N., and C. Ertur  (2010), “Testing for Spatial Autocorrelation in a Fixed Effects Panel Data Model”, Regional Science and Urban Economics, 40(6), 453–470. article. https://doi.org/http://dx.doi.org/10.1016/j.regsciurbeco.2010.06.001
Elhorst, J. P. (2003), “Specification and Estimation of Spatial Panel Data Models”, International Regional Science Review, 26(3), 244–268. https://doi.org/10.1177/0160017603253791
Elhorst, J. P. (2010), “Dynamic Panels with Endogenous Interaction Effects when T is Small”, Regional Science and Urban Economics, 40(5), 272–282. https://doi.org/10.1016/j.regsciurbeco.2010.03.003
Elhorst, J. P. (2012), “Dynamic Spatial Panels: Models, Methods and Inferences”, Journal of Geographical Systems, 14(1), 5–28. https://doi.org/10.1007/s10109-011-0158-4
Elhorst, J. P. (2014), Handbook of Regional Science, (M. M. Fischer and P. Nijkamp, Eds.), Handbook of Regional Science, Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-23430-9
Jeanty, P. W., M. Partridge and E. Irwin (2010), “Estimation of a Spatial Simultaneous Equation Model of Population Migration and Housing Price Dynamics”, Regional Science and Urban Economics, 40(5), 343–352.
Lee, L., J. and Yu (2010), “Some recent Developments in Spatial Panel Data Models”, Regional Science and Urban Economics, 40(5), 255–271. https://doi.org/10.1016/j.regsciurbeco.2009.09.002
LeSage, J. P. (2008), “An Introduction to Spatial Econometrics”, Revue D’économie Industrielle, 123(123), 19–44. https://doi.org/10.4000/rei.3887
LeSage, J. P., and R.K. Pace (2008), “Spatial Econometric Modeling of Origin-destination Flows*”, Journal of Regional Science, 48(5), 941–967. https://doi.org/10.1111/j.1467-9787.2008.00573.x
Meen, G. (2002), “The Time-Series Behavior of House Prices: A Transatlantic Divide?”, Journal of Housing Economics, 11(1), 1–23. https://doi.org/http://dx.doi.org/10.1006/jhec.2001.0307
Meen, G. (2008), “Housing, Random Walks, Complexity and the Macroeconomy”, Housing Economics and Public Policy (pp. 90–109). Oxford, UK: Blackwell Science Ltd.
https://doi.org/10.1002/9780470690680.ch6
Meen, G. (2012), “Price Determination in Housing Markets”, International Encyclopedia of Housing and Home (Vol. 5, pp. 352–360). Elsevier. https://doi.org/10.1016/B978-0-08-047163-1.00112-0
Meen, G. P., A. Smith and R. Jones (1990), “The Removal of Mortgage Market Constraints and the Implications for Econometric Modelling of UK House Prices”, Oxford Bulletin of Economics and Statistics, 52(1), 1–23. JOUR.
Monkkonen, P., K. Wong and J. Begley (2012), “Economic Restructuring, Urban Growth, and Short-term Trading: The Spatial Dynamics of the Hong Kong Housing Market, 1992–2008”, Regional Science and Urban Economics, 42(3), 396–406. https://doi.org/10.1016/j.regsciurbeco.2011.11.004
Poterba, J. M., J.J. Rotemberg, L.H. Summers, P.I.N. Marylan, and A. Tale (1985), Budget. Any Opinions Expressed are those of the authors and not those of the National Bureau of Economic Research. Management. JOUR.
Yu, J., R. de Jong and L. Lee (2008), “Quasi-maximum Likelihood Estimators for Spatial Dynamic Panel Data with Fixed Effects when both n and T are Large”, Journal of Econometrics, 146(1), 118–134. https://doi.org/10.1016/j.jeconom.2008.08.002.