Document Type : Research Paper

Authors

1 PhD Student in International Economics, Faculty of Administrative and Economic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor, Faculty of Administrative and Economic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

3 Assistant Professor, Department of Power and Energy Economics, Niroo Research Institute, Tehran, Iran

Abstract

 Electricity trade has emerged as a crucial element within the global energy market, necessitating strategic optimization of Iran's role within this system. This study endeavors to design a mathematical model for optimizing Iran’s electricity exchanges by analyzing the balance between direct electricity exports and indirect exports, particularly through product groups such as steel and cement. The research employs an applied quantitative design, utilizing supply and demand modeling, and integrating elements of trade network analysis and competitiveness theory. The statistical population encompassed Iran's electricity-intensive export sectors, with key products demonstrating high energy consumption and export relevance selected via a purposive sampling method. The study modeled decision-making scenarios related to electricity production, import, and export structures, employing a mathematical framework rooted in competitiveness indices and trade gravity models. Data analysis was performed using sensitivity analysis and network trade indicators. The results indicate that a moderate increase in electricity production capacity significantly supports enhanced profitability and regional competitiveness, while excessive expansion leads to diminishing returns. Steel was identified as a high-potential long-term export product, whereas cement proved to be a more viable short-term option. The study concludes that reforms in the supply structure and the implementation of targeted export strategies are essential for improving Iran’s electricity trade, noting that increased bargaining power alone will not guarantee higher profitability. The developed model serves as a strategic planning tool to strengthen Iran’s position in both regional and international electricity trade.
Introduction
Electricity is vital to modern infrastructure and economic development, and Iran—endowed with ample energy resources and strong generation capacity—has the potential to lead regional electricity trade. However, rising domestic demand, resource limitations, and regional competition require a strategic reassessment of export and import policies. While earlier studies mostly emphasized direct electricity trade, this study introduces a dynamic multi-objective optimization model that also includes indirect exports through energy-intensive goods like aluminum and steel. The model positions Iran as the central node in a regional trade network, with its electricity flows treated as decision variables and external flows assumed stable. It aims to optimize electricity allocation among domestic use, direct exports, and indirect exports, using criteria such as trade competitiveness, profitability, gravity index, and infrastructure constraints. The study evaluates trade with key partners like Turkey, Iraq, and Pakistan, and supports policymakers in identifying optimal strategies and understanding the economic rationale behind Iran’s electricity trade. The paper provides a structured analysis across five sections, offering practical insights and policy tools.
Methodology
This study develops a decision-making framework to optimize Iran's electricity trade, covering both direct electricity exchanges and indirect trade through electricity-intensive goods. The model uses a multi-objective optimization approach to enhance competitiveness and profitability while reducing costs. It assumes a fixed trade network with constant flows among other countries, treating Iran’s electricity inflows and outflows as decision variables. The mathematical formulation defines key sets for countries (V), electricity-intensive commodities (K), and domestic allocation scenarios (S).
 
Key Constraints:
Electricity Supply Constraint: This constraint ensures that domestic consumption, direct exports, and indirect trade do not exceed the total electricity capacity
 
Export Capacity Constraints: Exports cannot exceed the domestic production limits for energy-intensive goods. Demand Constraints: Trade must align with market demand limits. Minimum Electricity Allocation for Industry: To prevent the collapse of energy-intensive sectors, a minimum electricity allocation for substitute commodity exports is ensured, and also Total Trade Volume Calculation: Iran’s total trade accounts for both direct and indirect electricity flows.
Objective Functions:
Maximize Iran’s Trade Competitiveness:




 


 




 
 
 
Maximize Profitability:




 


 




This methodological framework enables policymakers to optimize Iran’s electricity trade position, balancing domestic electricity allocation, direct exports, and indirect exports.
Results and Discussion
This study introduces a mathematical model for optimizing Iran’s electricity trade by incorporating both direct exports and indirect trade through electricity-intensive goods like steel and cement. Using real-world data, the model identifies effective trade strategies to enhance competitiveness and profitability. Key findings show that steel is a valuable long-term export, while cement offers short-term gains. A moderate (10–15%) increase in domestic electricity production boosts trade performance, but returns diminish beyond that. Political efforts to increase demand are not financially effective under current conditions.
Policy Recommendations
Based on the study's findings, the following policy recommendations are proposed:

Prioritize Energy-Intensive Exports: Focus on industries like steel and cement over direct electricity exports to maximize economic gains.
Control Generation Growth: Keep electricity production increases within 10–15% to avoid diminishing returns.
Support Export-Oriented Plants: Promote private investment in power plants dedicated to exports to balance domestic supply and boost revenue.
Improve Trade Infrastructure: Strengthen legal and technical frameworks to reduce dependence on political negotiations and enhance regional trade efficiency.

Keywords

مهرابی، مهسا و شریفی، علیمراد و صفاری، بابک. (۱۴۰۳). مدل‌سازی اقتصادی شبکه تبادل برق ایران و همسایگان غربی با استفاده از رویکرد بهینه‌یابی. فصلنامه پژوهشهای اقتصادی (رشد و توسعه پایدار)، ۲۴ (۱)، ۱۶۳-۱۹۲.
عظیم‌زاده آرانی، محمد و کجوری نفت‌چالی، محسن. (۱۴۰۲). تحلیل فرایند اصلاحات بخش برق در چین و توصیه‌های سیاستی برای ایران. فصلنامه پژوهشنامه اقتصادی, ۲۳۹۱, ۱۶۶–۲۱۷.
رفعت، منیره. (1400). تحلیل جایگاه تجاری ایران و شرکای آن در غرب آسیا بر اساس شاخص‌های وزن‌دار شبکه تجاری. فصلنامه نظریه‌های کاربردی اقتصاد، 8(1)، 145-164.
doi:10.22034/ecoj.2021.23800.2135
طاهری، صالح؛ کریم‌زاده، مصطفی؛ سیفی، احمد؛ ملک‌السادات، سعید. (۱۴۰۲). بررسی اثرات عضویت در سازمان همکاری‌های شانگهای بر امکان‌پذیری ایجاد پیوند تجاری در شبکه تجاری کشورهای پساشوروی؛ رهیافت مدل گراف تصادفی (ERGM). اقتصاد و تجارت نوین, ۱۸ (شماره ۲), ۲۷-47.
 doi: 10.30465/jnet.2023.44315.1999
میرتاج‌الدینی، لیلا؛ شیرین‌بخش ماسله، شمس‌اله؛ موسوی، میرحسین؛ & حیدری، کیومرث. (۱۴۰۱). بررسی جایگاه و شدت رقابت تجارت برق ایران در منطقه غرب آسیا با استفاده از رویکرد تئوری شبکه، نشریه توسعه و سرمایه،7(1)، ۲۲۷-۲۵0.
 doi:10.22103/jdc.2022.19086.1210
تقوی، مهدی، جهانگرد، اسفندیار، و صفوی، راشد. (۱۳۹۰). *بررسی و تحلیل مدل هکشر-اهلین-وانک (HOV) در اقتصاد ایران. فصلنامه تحقیقات مدلسازی اقتصادی، ۱ (۳)، ۴۵-۶۹.
جلائی اسفندآبادی سید عبد المجید، افشارپور مهلا. (۱۳۹۹). صادرات ضمنی یارانه حامل‌های انرژی در ایران (۱۳۸۷-۱۳۹۵). فصلنامه پژوهش‌های رشد و توسعه پایدار، 20(4)، ۹۱–۶۷.
رفعت منیره. (1397). کاربرد تکنیک تحلیل شبکه در بررسی روابط چندجانبه تجاری ایران با مهم‌ترین شرکای تجاری در آسیا. فصلنامه تحقیقات مدلسازی اقتصادی. ۹ (۳۴)، ۱۰۷-۱۳۷.
فریدزاد، علی . (1398). سنجش خالص صادرات بین بخشی یارانه ضمنی حامل‌های انرژی در سطح بخش‌های اقتصادی ایران. فصلنامه پژوهش‌های اقتصادی ایران. 24(78)، 125-93.
doi: 10.22054/ijer.2019.10164
ﻃﺎﻫﺮﻱﻓﺮﺩ، ﻋﻠﻲ و ﺍﺧﻮﺍﻥ، ﻣﻬﺪﻱ. (۱۳۸۸). ﻣﺤﺎﺳﺒﻪ ﺻﺎﺩﺭﺍﺕ ﻣﺴﺘﻘﻴﻢ ﻭ ﻏﻴﺮﻣﺴﺘﻘﻴﻢ ﺑﺮﻕ ﻭ ﻳﺎﺭﺍﻧﻪ ﺿﻤﻨﻲ ﭘﺮﺩﺍﺧﺘﻲ ﺑﺨﺶ ﺑﺮﻕ ﺑﻪ ﺑﺨﺶ ﺻﺎﺩﺭﺍﺕ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺟﺪﻭﻝ ﺩﺍﺩﻩ- ﺳﺘﺎﻧﺪﻩ. بررسی‌های بازرگانی، (۳۷)، 8-2.
لطفعلی​پور، محمد رضا، نوروزی، روح اله، آشنا، ملیحه، ذبیحی، مریم. (1388). بررسی تاثیر الحاق به سازمان جهانی تجارت بر صادرات برق ایران. فصلنامه مدل‌سازی اقتصادی، 3 (3-پ9)، 202–177.
Abrell, Jan & Mirjam Kosch (2022). “Cross-country spillovers of renewable energy promotion—The case of Germany.” Resource and Energy Economics, 68, 101293. 
DOI: 10.1016/j.reseneeco.2022.101293.
Aller, C., Ductor, L., & Herrerias, M. J. (2015). The world trade network and the environment. Energy Economics, 52(Part A), 55–68.
DOI: 10.1016/j.eneco.2015.09.008.
Anderson, J. E. (1979). A theoretical foundation for the gravity equation. American Economic Review, 69(1), 106–116. DOI:10.2307/1802501
Antweiler, W. (2016). Cross-border trade in electricity. Journal of International Economics, 101(March), 42–51.
DOI: 10.1016/j.jinteco.2016.03.007.
Azimzadeh Arani, M., & Kajouri Neftchāli, M. (2023). Analysing the electricity-sector reform process in China and policy recommendations for Iran. Pazhoheshnameh Eghtesadi (Economic Research & Perspectives), 23(91), 166–217. [in Persian]
Bergstrand, J. H. (1985). The gravity equation in international trade: Some microeconomic foundations and empirical evidence. Review of Economics and Statistics, 67(3), 474–481. DOI:10.2307/1925976.
Braeutigam, R. R. (1989). Optimal policies for natural monopolies. In R. Schmalensee & R. D. Willig (Eds.), Handbook of industrial organization (Vol. 2, pp. 1289–1346). Elsevier.
DOI:10.1016/S1573-448X(89)02006-9.
Brell, J., Rausch, S., & Schwenen, S. (2021). Cross-border electricity trading and climate policy interactions in Europe. Energy Economics, 96, 105149.
DOI:10.1016/j.eneco.2021.105149.
Bistline, J., Onda, C., & Browning, M. (2023). Equity implications of net-zero emissions: A multi-model analysis of energy expenditures across income classes under economy-wide deep decarbonization policies. Energy and Climate Change, 5, 100-118.
Brander, J., & Krugman, P. (1983). A ‘reciprocal dumping’ model of international trade. Journal of International Economics, 15(3–4), 313–321.
DOI:10.1016/S0022-1996(83)80007-7.
Chen, W., Niu, X., Ke, W., & Yu, Z. (2023). Investigating the energy trade networks in the Belt and Road regions: Structures and evolution. Energy, 283, 129157. DOI: 10.1016/j.energy.2023.129157.
Fagiolo, G., Reyes, J., & Schiavo, S. (2010). International trade and financial integration: A weighted network analysis. Quantitative Finance, 10(4), 389–399.
DOI:10.1080/14697680902882420.
Feenstra, R. C. (2015). Advanced international trade: Theory and evidence. (2nd ed.). Princeton University Press. ISBN: 9780691161648.
Grubel, H. G., & Lloyd, P. J. (1975). Intra-industry trade: The theory and measurement of international trade in differentiated products. John Wiley & Sons. ISBN: 0470330007.
Head, K., & Mayer, T. (2021). Gravity equations: Workhorse, toolkit, and cookbook. In G. Gopinath, E. Helpman, & K. Rogoff (Eds.), Handbook of International Economics (Vol. 5, pp. 131–195). Elsevier.
Heckscher, E. F., & Ohlin, B. (1991). Heckscher–Ohlin Trade Theory (H. Flam & M. J. Flanders, Eds. & Trans.). Cambridge, MA: The MIT Press.
DOI: 10.7551/mitpress/2691.001.0001.
Huff, D. L. (1963). A probabilistic analysis of shopping center trade areas. Land Economics, 39(1), 81–90. DOI: 10.2307/3144521.
Jackson, M. O. (2008). Social and Economic Networks. Princeton University Press.
 DOI:10.2307/j.ctvcm4gh1. JSTOR
Jalaee Esfandâbâdi, S. A., & Afsharpour, M. (2020). Implicit exports of energy-carriers’ subsidies in Iran (2008-2016). Research in Growth and Sustainable Development Quarterly, 20(4), 67-91. [in Persian]
Lotfialipour, M. R., Norouzi, R., Ashna, M., & Zabihi, M. (2009).
Investigating the impact of accession to the World Trade Organization on Iran’s electricity exports. Quarterly Journal of Economic Modeling, 3(3-9), 177–202. [in Persian]
Li, X., Jin, Y. Y., & Chen, G. (2003). Complexity and synchronization of the world trade web. Physica A: Statistical Mechanics and its Applications, 328(1–2), 287–296.
DOI:10.1016/S0378-4371(03)00567-3.
Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective optimization: New insights. Structural and Multidisciplinary Optimization, 41(6), 853–862.
Mehrabi, M., Sharifi, A., & Saffari, B. (2024). Economic modeling of power pool of Iran and western neighbors using optimization approach. Economic Research and Perspectives, 24(1), 163–192. [in Persian]
Mertens, T., Gonzalez-Salazar, M. A., & Howells, M. (2021). Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope. Applied Energy, 282, 116060.
Mirtajadini, L., Shirin Bakhsh, S., Mousavi, M. H., & Heydari, K. (2022, July). The importance and competition intensity of cross-border electricity trade of Iran in West Asia community, using trade network theory. Journal of Development and Capital, 7(1), 227–250. [in Persian]
Rafat, M. (2018). The application of complex networks analysis to assess Iran’s trade and its most important trading partners in Asia. Journal of Economic Modelling Research, 9(34), 107-137. [in Persian]
Rafat, M. (2021). Analysis of Iran and its partners in West Asia’s trade position based on weighted trade-network indicators. Quarterly Journal of Applied Theories of Economics, 8(1), 145-164. [in Persian]
Ricardo, D. (2015 [1817]). On the Principles of Political Economy, and Taxation. Cambridge University Press.
DOI:10.1017/CBO9781107589421.
Rogowski, R. (1990). Commerce and coalitions: How trade affects domestic political alignments. Princeton University Press. ISBN ‎0691023301. DOI: 10.1515/9780691219431.
Sadorsky, P. (2011). Trade and energy consumption in the Middle East. Energy Economics, 33(5), 739–749.
Singh, A., Jamasb, T., Nepal, R., & Toman, M. (2018). Electricity cooperation in South Asia: Barriers to cross-border trade. Energy Policy, 120, 741–748.
DOI: 10.1016/j.enpol.2017.12.048.
Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations. Oxford Scholarly Editions Online.
Taheri, S., Karim Zadeh, M., Seifi, A., & Malek Sadati, S. (2023). Investigating the effects of membership in the Shanghai Cooperation Organization on the possibility of creating commercial links in the trade network of post-Soviet countries: A Random Graph Model (ERGM) approach. Eghtesad va Tejarat Novin, 18(2), 27-47. [in Persian]
Taheri-Fard, A., & Akhavan, M. (2009). Calculation of direct and indirect electricity exports and implicit subsidy payments of the electricity sector to the export sector using input-output tables. Barresi-ye Bazargani (Business Studies), 37, 2–8. [in Persian]
Taghavi, M., Jahangard, E., & Safavi, R. (2011). Testing the Heckscher-Ohlin-Vanek (HOV) model in Iran. Journal of Economic Modelling Research, 2(3), 45-69. [in Persian]
Timilsina, G. R., & Toman, M. (2016). Potential gains from expanding regional electricity trade in South Asia. Energy Economics, 60 (November), 6–14.
Torreggiani, S., Mangioni, G., Puma, M. J., & Fagiolo, G. (2018). Identifying the community structure of the international food-trade multi-network. Environmental Research Letters, 13(5), 054026.
DOI:10.1088/1748-9326/aabf23.
Venizelou, V., & Poullikkas, A. (2024). Trend analysis of cross-border electricity trading in Pan-European network. Energies, 17(21), 5318. DOI:10.3390/en17215318.
Xu, H.-C., Wang, Z.-Y., Jawadi, F., & Zhou, W.-X. (2023). Reconstruction of international energy trade networks with given marginal data: A comparative analysis. Chaos, Solitons & Fractals, 167, 113031.
DOI: 10.1016/j.chaos.2022.113031.
Zhang, H., Ji, Q., & Fan, Y. (2014). Competition, transmission and pattern evolution: A network analysis of global oil trade. Energy Policy, 73 (October), 312–322.
DOI:10.1016/j.enpol.2014.06.020.
Zhao, X., Lin, B., & Li, X. (2021). Modeling electricity trade among China’s provinces: A gravity model approach. Applied Energy, 289, 116648.
DOI: 10.1016/j.apenergy.2021.116648.