Document Type : Research Paper

Authors

1 Graduated from Allameh Tabataba’i University, Tehran, Iran

2 Professor, Faculty of Economics, Allameh Tabataba’i University, Tehran, Iran

3 Associate Professor, Faculty of Economics, Allameh Tabataba’i University, Tehran, Iran

Abstract

 
Given the importance of economic globalization and the role of intermediate goods in global value chains, this study aims to assess countries’ share of international trade. In this regard, the relationship between domestic value-added (DVA) in gross exports and vertical specialization (VS) among 45 countries was analyzed, and traditional and modern methods of measuring countries’ share in international trade were compared. Data from input-output tables of 43 countries for 2014 and data for Iran and Singapore for 2016 and 2015 were examined, respectively. The findings showed that the inverse relationship between the share of DVA/TGE and VS/TGE holds, as in previous studies, and modern methods provide a more accurate picture of countries’ trade status due to considering intermediate goods and value-added production. In general, in resource-based countries, the share of DVA is higher and the share of VS is lower than the average. Meanwhile, Iran, with DVA and VS shares of 0.94 and 0.06, respectively, ranks at the top and bottom of 45 countries, indicating a weak link with the global value chain and reliance on upstream activities.
.
Introduction
Economic globalization has led to the emergence of new theories in international trade, emphasizing the critical role of intermediary goods in production processes and value chains. Countries participate in value chains differently based on their economic structures and trade patterns, impacting trade balances and related economic variables. Resource-based economies, such as Iran, with asymmetric trade patterns, tend to have lower integration in global value chains compared to non-resource-based economies with symmetric trade patterns. Quantifying value chains through domestic value-added (DVA) and vertical specialization (VS) helps to assess Iran’s position and its integration into international trade. The increasing importance of intermediary goods in exports has shifted focus from traditional trade theories, which prioritized final goods, to modern theories like “trade in stages” or “trade in tasks”, emphasizing the connection between production factors, intermediary goods, and final products. Modern methods address the shortcomings of traditional models and provide more accurate calculations of value chains.
This study explores (1) the relationship between DVA, VS, and international trade participation in resource-based and non-resource-based economies, and (2) the suitability of modern methods over traditional ones in assessing countries’ share in international trade. The paper is organized into six sections: theoretical framework, literature review, data foundations, research methodology, results, and discussion.
Methods and Materials
This study uses input-output tables from three key sources: the World Input-Output Database (WIOD) for 43 countries based on the 2014 benchmark year, the Central Bank of Iran (CBI) input-output table for 2016, and the Department of Statistics Singapore (DOS) table for 2015. According to the International Monetary Fund (IMF) classification in 2020, economies with more than 20% of their exports derived from resource-based sectors are categorized as resource-based economies. Based on this criterion, countries such as Norway, Australia, Iran, Russia, Brazil, Canada, and Indonesia are considered resource-based economies, while countries with less than 5% of their exports derived from resource-based sectors, such as Malta, Japan, Taiwan, Luxembourg, South Korea, Switzerland, and Singapore, are classified as non-resource-based economies. Countries with resource-based export shares between 5% and 20% are categorized as intermediate economies.
To address the research objectives and questions, this study adopts the modern hypothetical extraction method to calculate domestic value-added (DVA) in gross exports and vertical specialization (VS), equivalent to foreign value-added (FVA). The modern approach decomposes gross exports to measure domestic value creation, intermediate imports’ share in exports, and the specialization of countries in production stages. Using this method, the study highlights the inverse relationship between DVA/TGE and VS/TGE and compares these measures to traditional methods, which rely on gross export ratios. While traditional methods assume that exports directly generate value-added and neglect the role of intermediate goods, the modern approach provides a more accurate assessment of countries’ participation in global value chains.
Results and Discussion
In line with the research questions, the findings are presented in two main areas: (1) examining the shares of DVA and VS, and (2) analyzing the results of traditional and modern methods for measuring countries’ shares in international trade.

Examining the Shares of DVA and VS

Similar to previous studies, the findings confirm an inverse relationship between DVA and VS shares at the macroeconomic level. As shown in Figure 1, resource-based economies such as Canada, Russia, Iran, Australia, Norway, Brazil, and Indonesia generally have higher DVA shares and lower VS shares compared to non-resource-based economies. For instance, except for countries like Singapore, Hungary, Malta, and Luxembourg (small non-resource-based economies), VS shares are lower than DVA shares in all other countries. According to the 2019 WTO report, economies with skilled labor, such as Singapore, tend to integrate into global value chains (GVCs) in higher value-added segments like design and specialized services.
Table 1 illustrates the average shares of DVA/TGE and VS/TGE, both overall and within two distinct groups of countries. In Table 2, we present the average shares of DVA/TGE, VS/TGE, TGE/WTGE, and TGE/GDP for a sample of 45 countries, highlighting the differences in trade dynamics among them.
Figure 1. Comparison of the ratio of domestic value added and vertical specialization to total exports of each country with other countries
 
Source: Research findings
Table 1. Average shares of DVA/TGE and VS/TGE overall and between the two groups of countries




Country Groups


Average DVA/TGE


Average VS/TGE




All Countries


0.71


0.29




Resource-Based Countries


0.86


0.14




Non-Resource-Based Countries


0.66


0.34




Source: Research findings
Table 2. Average shares of DVA/TGE, VS/TGE, TGE/WTGE, and TGE/GDP for 45 countries




Average TGE/GDP


Average TGE/WTGE


Average VS/TGE


Average DVA/TGE




0.19


0.03


0.29


0.71




Source: Research findings
 

Analyzing Traditional vs. Modern Methods

Traditional methods, based on gross export ratios (TGE/GDP and TGE/WTGE), fail to account for imported intermediate goods and multiple border crossings of goods, leading to an incomplete picture of trade competitiveness. Modern methods, focusing on DVA/TGE and VS/TGE, offer a clearer understanding of the actual value created domestically and the role of intermediate imports. As shown in Table 2, the global averages for TGE/GDP and TGE/WTGE are 0.19 and 0.03, respectively, while for DVA/TGE and VS/TGE are 0.71 and 0.29. Table 3 highlights that resource-based economies like Iran, Russia, and Brazil rank low in VS/TGE, reflecting limited integration into GVCs. On the other hand, non-resource-based economies with higher VS shares, such as Singapore, demonstrate greater integration into global trade through specialization and intermediate imports. Table 3 displays the results obtained from both traditional and modern methods for measuring the contributions of individual countries to international trade.
The findings indicate that high DVA shares may reflect economic independence but also limited engagement with GVCs, reducing opportunities for technological transfer and productivity gains. Resource-based economies, reliant on upstream industries, need to diversify and increase their participation in GVCs to enhance competitiveness and benefit from international trade.
 
 
 Table 3. Results of traditional and modern methods for measuring countries’ shares in international trade (in order)




Rank


VS/
TGE


Country Name (Lowest)


TGE/ WTGE


Country Name (Highest)


TGE/
GDP


Country Name (Highest)




1


0.06


Iran (Lowest)


0.139


China (Highest)


0.79


Luxembourg (Highest)




2


0.08


Russia


0.111


United States


0.701


Singapore




3


0.13


United States


0.097


Germany


0.655


Ireland




4


0.13


Brazil


0.047


Japan


0.638


Malta




5


0.14


Australia


0.044


France


0.561


Hungary




6


0.17


Indonesia


0.043


United Kingdom


0.545


Slovakia




7


0.17


China


0.04


South Korea


0.533


Czech Republic




8


0.17


Norway


0.034


Italy


0.514


Lithuania




9


0.19


United Kingdom


0.033


Netherlands


0.505


Netherlands




10


0.21


India


0.032


Canada


0.504


Belgium




11


0.23


Japan


0.029


Singapore


0.499


Estonia




12


0.24


Canada


0.028


Russia


0.494


Slovenia




13


0.25


Switzerland


0.022


Spain


0.484


Taiwan




14


0.26


Italy


0.022


Belgium


0.419


Bulgaria




15


0.27


Romania


0.021


Taiwan


0.41


Switzerland




16


0.27


Croatia


0.021


Mexico


0.405


Denmark




17


0.28


Germany


0.021


India


0.396


Austria




18


0.28


France


0.02


Switzerland


0.387


Latvia




19


0.29


Turkey


0.016


Australia


0.385


South Korea




20


0.29


Sweden


0.016


Brazil


0.38


Poland




21


0.29


Cyprus


0.015


Ireland


0.378


Germany




 
 
 
Table 3.




Rank


VS/
TGE


Country Name (Lowest)


TGE/ WTGE


Country Name (Highest)


TGE/
GDP


Country Name (Highest)




22


0.03


Greece


0.014


Turkey


0.358


Sweden




23


0.31


Spain


0.014


Sweden


0.357


Croatia




24


0.31


Latvia


0.14


Poland


0.341


Cyprus




25


0.31


Poland


0.12


Austria


0.339


Norway




26


0.32


Portugal


0.12


Indonesia


0.325


Romania




27


0.34


Mexico


0.11


Norway


0.317


Finland




28


0.35


Finland


0.1


Denmark


0.287


Portugal




29


0.35


South Korea


0.09


Czech Republic


0.277


Canada




30


0.36


Austria


0.07


Luxembourg


0.275


Turkey




31


0.36


Netherlands


0.07


Hungary


0.263


Russia




32


0.36


Lithuania


0.06


Finland


0.251


Spain




33


0.37


Slovenia


0.05


Iran


0.251


Italy




34


0.37


Denmark


0.05


Slovakia


0.248


Mexico




35


0.38


Bulgaria


0.04


Portugal


0.241


France




36


0.42


Taiwan


0.04


Romania


0.231


United Kingdom




37


0.43


Estonia


0.03


Greece


0.22


Greece




38


0.46


Belgium


0.02


Slovenia


0.206


China




39


0.46


Czech Republic


0.02


Bulgaria


0.204


Indonesia




40


0.48


Ireland


0.02


Lithuania


0.195


Iran




41


0.48


Slovakia


0.01


Estonia


0.186


Australia




42


0.51


Singapore


0.01


Cyprus


0.16


Japan




43


0.52


Hungary


0.01


Croatia


0.153


India




44


0.65


Malta


0.01


Latvia


0.109


Brazil




45


0.66


Luxembourg


0.01


Malta


0.102


United States




Source: Research findings
Conclusion
This study highlights the importance of adopting modern methods to measure countries’ shares in international trade, emphasizing the need for resource-based economies to diversify their production structures and integrate deeper into global value chains. Future research could explore the impact of factors such as technological advancement, workforce productivity, and international trade agreements on enhancing participation in GVCs. Here are the key findings:
- There is a clear inverse relationship between domestic value-added (DVA) and vertical specialization (VS) shares across all countries. Greater participation in global trade is associated with higher reliance on imported intermediates and lower utilization of domestic raw resources for value-added creation.
- Resource-based economies (e.g., Iran, Russia, Australia) have higher DVA shares (above the global average of 0.65) and lower VS shares, indicating less integration into global value chains (GVCs). These economies rely heavily on upstream industries and domestic resources, focusing less on intermediate imports and downstream production stages.
- Non-resource-based economies (e.g., Singapore, Malta) exhibit higher VS shares, emphasizing vertical specialization and deeper integration into GVCs.
- Traditional methods (e.g., TGE/GDP and TGE/WTGE) fail to account for imported intermediates and overestimate a country’s trade performance, especially in economies reliant on imports for export production.
- Modern methods (DVA/TGE and VS/TGE) offer a more accurate assessment of countries’ contributions to global trade by focusing on the actual value-added rather than gross trade volumes.

Keywords

ابراهیمی‌فر، یدالله، جوادی، محمدرضا. (1399). حلقه‌های مفقوده در ساختار تولید کشور. سازمان برنامه ‌و بودجه کشور. مرکز پژوهش‌های توسعه و آینده‌نگری. مجموعه گزارش شماره 241. کد شناسه: 10289-8-1400
اداره حساب‌های اقتصادی بانک مرکزی جمهوری اسلامی ایران، (1399). گزارش فراداده جدول داده-ستانده اقتصاد ایران سال 1395. 599.
بانویی، علی‌اصغر، شرکت، افسانه، بزازان، فاطمه، شاه‌حسینی، سمیه، کیانی‌راد، آذین. (1401). مقایسه خطاهای آماری جداول‌ داده- ستانده نوع دوم و نوع سوم پایه‌های آماری و نسبت آن‌ها با ارزش‌افزوده در صادرات. فصلنامه پژوهشنامه اقتصادی، 22(87)، 77-108.
بانویی، علی‌اصغر، (1391). ارزیابی شقوق مختلف نحوه منظور کردن واردات و روش‌های تفکیک آن با تاکیدتاکید بر جدول متقارن سال 1380. مجله علمی پژوهشی سیاستگذاری اقتصادی، 4(8)، 31-74 .
بانویی، علی‌اصغر، فهیمی، بهاره، (1400). به‌کارگیری متوسط فاصله انتشار در شناسایی زنجیره‌های تولید و نسبت آن با ارزش‌افزوده داخلی در صادرات ناخالص و تخصص‌گرایی عمودی؛ مطالعه موردی اقتصاد ایران، مجله تحقیقات اقتصادی، (1)56، 25-58.
بانویی، علی‌اصغر، موسوی‌نیک، سید ‌هادی، اسفندیاری گلوکن، مجتبی، وفایی‌یگانه، رضا، ذاکری، زهرا، کرمی، مهدی، (۱۳۹۱). ارزیابی روش‌های محاسبه جداول متقارن داده-ستانده، با تاکید بر برداشت‌های متفاوت از فرض تکنولوژی در ایران، فصلنامه مجلس و راهبرد، 19(۷۲)، 101-139.
بانویی، علی‌اصغر، موسوی، سید هادی، اسفندیاری گلوکن، مجتبی، ذاکری، زهرا، (1394). تعاریف و مفاهیم پایه‌ای، پایه‌های نظری و روش مثال محاسبه جدول داده- ستانده متقارن؛ تجربه ایران و جهان، مرکز پژوهش‌های مجلس شورای اسلامی، اداره کل هماهنگی و برنامه‌ریزی پژوهشی، اداره انتشارات و مجله. 232.
بیابانی‌خامنه، کاظم، نجارزاده، رضا، درگاهی، حسن، عاقلی، ‌لطفعلی. (1401) . زنجیره‌های جهانی ارزش و بهبود عملکرد زیست‌محیطی در کشورهای در حال توسعه. فصلنامه پژوهشهای اقتصادی (رشد و توسعه پایدار)، 83(22)، 1-31.
تیموری، سید رحیم، مجیدزاده، رضا، (1400). بررسی تجارب جدید در توسعه با نگاه به گزارش‌های توسعه جهانی 2020-1991. سازمان برنامه‌وبودجه کشور. مرکز پژوهش‌های توسعه و آینده‌نگری. مجموعه گزارش شماره 257.
جهانگرد، اسفندیار، فریدزاد، علی، کاکایی، جمال، ساجدیان فرد، نجمه، شکری، الهه. (1401). درج جدول داده- ستانده ایران در جدول داده-ستانده بین‌کشوری. فصلنامه مدلسازی اقتصادسنجی، 7(4)، 65-92.
شرکت، افسانه، بانویی، علی‌اصغر، شاه حسینی، سمیه، بزازان، فاطمه، کیانی‌راد، آذین. (1402). به‌کارگیری روش‌های حذف فرضی و متعارف در سنجش ارزش‌افزوده در تجارت: نتایج یکسان یا متفاوت؟ . فصلنامه تحلیل‌های اقتصادی توسعه ایران، 9(1)، 123-142.
قازاریان، اولین، بانویی، مؤمنی، فرشاد. (2024). شناسایی محیط درونی و بیرونی زنجیره‌های تولید و نسبت آنها با مسئله خام فروشی. فصلنامه تحلیل‌های اقتصادی توسعه ایران، 10(1)، 51-72.
کروگمن، پل آر. اوبیسفیلد، موریس. (۱۳۸۴). اقتصاد بینالملل تئوری وسیاست (جلد اول: تجارت بینالملل). ترجمه حسین صمصامی. تهران: مرکز چاپ و انتشارات دانشگاه شهید بهشتی. 372.
مک کین، فیلیپ. (1394). اقتصاد نوین شهری و منطقه‌ای. ترجمه شهرام رئیسی دهکردی. تهران: انتشارات نور علم. 588.
مهاجری، پریسا، بانویی، علی‌اصغر، فراست، زهره، مومنی، لیلا. (1395). سنجش وابستگی بخش‌های اقتصادی به واردات از بعد مبدأ، مقصد و سیاستی با استفاده از جدول داده-ستانده تک‌منطقه‌ای؛ مطالعه موردی استان مازندران. فصلنامه سیاست‌گذاری پیشرفت اقتصادی، 4 (3)، 9-40. ‎
نجارزاده، رضا، درگاهی، حسن، عاقلی، لفعلی، بیابانی خامنه، کاظم. (1399). اندازه‌گیری شاخص‌های وضعیت اقتصاد ایران در زنجیره‌های جهانی ارزش و مقایسه با کشورهای منتخب. فصلنامه پژوهش‌ها و سیاست‌های اقتصادی، 28(94 )، 101-129.
Baldwin, R. (2016). The Great Convergence. Harvard University Press. DOI: http://dx. doi. org/10. 1080/09538259. 2019. 1644736
Baldwin, R; & Lopez‐Gonzalez, J. (2015). Supply‐chain trade: A portrait of global patterns and several testable hypotheses. The world economy, 38(11), 1682-1721.
Banouei, A. , Mousavi Nik, S. H. , Esfandyari Kolookan, M. , Vafaei Yeganeh, R. , Zakeri, Z. and Karami, M. (2013). Evaluation of Methods for Calculating Symmetric Input-Output Tables with Emphasis on Different Conceptions of Technology Presumptions in Iran. Majlis and Rahbord, 19(72), 101-139. [In Persian]
Banouei, A. A. (2012). Evaluation of the Different Treatments and Methods of Separating Imports with Emphasis on 1381 IOT of Iran. The Journal of Economic Policy, 4(8), 31-74. [In Persian]
Banouei, A. A. , Sherkat, A. , Bazzazan, F. , Shahhosseini, S. and Kiani Rad, A. (2022). Comparative Analysis of Statistical Errors Between Second and Third Types of Input-Output Tables and Their Correlation with Value-Added in Gross Exports. Economics Research, 22(87), 77-108. [In Persian]
Banouei, A. A. and fahimi, B. (2021). Application of Average Propagation Length in Identifying Production Chains and its Relation to Value-added in Gross Exports and Vertical Specialization: Case Study of Iran. Journal of Economic Research (Tahghighat- E- Eghtesadi), 56(1), 25-58. [In Persian]
Banouei, Ali Asghar, Mousavi, Seyed Hadi, Esfandiari Galoukan, Mojtaba, Zakeri, Zahra. (2015). Basic Definitions and Concepts, Theoretical Foundations and Example Calculation Method of the Symmetric Input-Output Table; The Experience of Iran and the World. Research Center of the Islamic Consultative Assembly, General Department of Coordination and Research Planning, Publications and Journal Department. 232. [In Persian]
Baten, Jörg (2016). A History of the Global Economy. From 1500 to the Present. Cambridge University Press.
Biabany Khameneh, K. , Najarzadeh, R. , Dargahi, H. and Agheli, L. (2022). Global Value Chains and Environmental Performance Improvement in Developing Countries. Economic Research and Perspectives, 22(1), 1-32. [In Persian]
Daudin, G., Rifflart, Ch. & Schweisguth. D. (2011). Who produces for whom in the world economy?. Canadian journal of economics/revue canadienne d’économique, 44(4), 1403-1437.
Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M., & De Vries, G. (2013). The construction of world input–output tables in the WIOD project. Economic systems research, 25(1), 71-98.
Dollar, David, ,Khan, Bilal & Pei, Jiansuo, (2019). Technological innovation, supply chain trade, and workers in a globalized world. World Trade Organization. Global Value Chain Development Report, Chapter 7. 196.
Ebrahimi Far, Yadollah, Javadi, Mohammadreza. (2020). Missing Links in the Country’s Production Structure. Plan and Budget Organization of the Country, Center for Development and Future Studies. Report No. 241. Identifier Code: 10289-8-1400. [In Persian]
Economic Accounts Department of the Central Bank of the Islamic Republic of Iran. (2020). Metadata Report of the Input-Output Table of the Iranian Economy, Year 2016. 599. [In Persian]
Ghazarian, E. , Banouei, A. and Momeni, F. (2024). Identifying the Environment of Internal and External Production Chains and their Relevance to the Issue of Raw Selling. Iranian Economic Development Analyses, 10(1), 51-72. [In Persian]
Grossman, G. M; & Rossi-Hansberg, E. (2008). Trading tasks: A simple theory of offshoring. American economic review, 98(5), 1978-1997.
Hummels, D., Ishii, J., & Yi, K. M. (2001). The nature and growth of vertical specialization in world trade. Journal of international Economics, 54(1), 75-96.
Jahangard, E., Faridzad, A., Kakaie, J., Sajedianfard, N., & Shokri, E. (2023). Inserting Iran's input-output table in the inter-country input-output (ICIO) table. Journal of Econometric Modelling, 7(4), 65-92. [In Persian]
Johnson, R. C. (2014). Five facts about value-added exports and implications for macroeconomics and trade research. Journal of economic perspectives, 28(2), 119-42.
Johnson, R. C., & Noguera, G. (2012). Accounting for intermediates: Production sharing and trade in value added. Journal of international Economics, 86(2), 224-236.
Koopman, R., Wang, Z., & Wei, S. J. (2014). Tracing value-added and double counting in gross exports. American economic review, 104(2), 459-94.
Krugman, Paul R., Obstfeld, Maurice. (2005). International Economics: Theory and Policy (Vol. 1: International Trade). Translated by Hossein Samsami. Tehran: Shahid Beheshti University Press. 372. [In Persian]
Levine, R., & Renelt, D. (1992). A sensitivity analysis of cross country growth regressions. The American economic review, 82(4), 942-963.
Los, B. (2017). Input–output analysis of international trade. In Handbook of Input–Output Analysis. Edward Elgar Publishing. Chapter 8, 52, 277-328.
Los, B., & Timmer, M. P. (2020). Measuring Bilateral Exports of Value Added: A Unified Framework, NBER Chapters, in: Challenges of Globalization in the Measurement of National Accounts, 389-421, National Bureau of Economic Research, Inc.
Los, B., Timmer, M. P., & de Vries, G. J. (2015). How global are global value chains? A new approach to measure international fragmentation. Journal of regional science, 55(1), 66-92.
Los, B; Timmer, M. P; & De Vries, G. J. (2016). Tracing value-added and double counting in gross exports: comment. American economic review, 106(7), 1958-66.
Madsen, J. B. (2009). Trade barriers, openness, and economic growth. Southern economic journal, 76(2), 397-418.
McCann, P. (2013). Modern urban and regional economics. Oxford University Press. Translated by Shahram Raeisi Dehkordi. Tehran: Noor-e-Elm Publications. 588. [In Persian]
Miller, R. E., & Lahr, M. L. (2001). A taxonomy of extractions. Contributions to economic analysis, 249, 407-441.
Miller، R. E. ، & Blair، P. D. (2022). Input-output analysis: foundations and extensions. Cambridge university press. 850.
Miroudot, S., & Ye, M. (2018). A simple and accurate method to calculate domestic and foreign value-added in gross exports. MPRA Paper 89907, University Library of Munich, Germany. 14.
Miroudot, S., & Ye, M. (2021). Decomposing value added in gross exports. Economic Systems Research, 33(1), 67-87.
Mohajeri, P., & Banouei, A. A. (2021). Estimating Domestic Value-Added in Gross Exports and Its Relation to Vertical Specialization: The Case of Iran. Iranian Journal of Economic Studies, 10(1), 7-29. [In Persian]
Mohajeri, P., Banouei, A. A., Farasat, Z., & Momeni, L. (2016). Measuring Economic Sectors Dependency on Imports with Emphasis on Origin, Destination and Policy Dimensions Using Single Regional Input-Output Table: The Case Study of Mazandaran Province. Iranian Economic Development Analyses, 4(3), 9-40. [In Persian]
 Najarzadeh R., Dargahi H., Agheli L., & Biabany Khameneh K. (2020). Measuring Iran's Economy Status Indicators in Global Value Chains and Comparison with Selected Countries. . [In Persian]
Najarzadeh, R., Dargahi, H., Agheli, L., & Biabany, K. K. (2020) Measuring Iran's Economy Status Indicators in Global Value Chains and Comparison with Selected Countries. 28 (94) :101-129 [In Persian]
OECD (2013), OECD Science, Technology and Industry Scoreboard 2013, OECD Publishing. 279.
Patunru, A. A., & Athukorala, P. C. (2021). Measuring trade in value added: how valid is the proportionality assumption?. Economic Systems Research, 292-300.
Porter, M. E. (1990). New global strategies for competitive advantage. Planning review, 18(3), 4-14.
Porter, M. E. (1998). Clusters and the new economics of competition (Vol. 76, No. 6, pp. 77-90). Boston: Harvard Business Review.
Sherkat, A. , Banouei, A. , Shahhosseini, S. , Bazzazan, F. and Kianirad, A. (2023). Application of Hypothetical Extraction and Conventional Method in Measuring Value-added in Trade: Equivalence or Different Result?. Iranian Economic Development Analyses, 9(1), 123-142. [In Persian]
Teimouri, Seyed Rahim, Majidzadeh, Reza. (2021). Review of New Experiences in Development with a Look at the World Development Reports 1991-2020. Plan and Budget Organization of the Country. Center for Development and Future Studies. Report No. 257. [In Persian]
Timmer, M. P., Los, B., Stehrer, R., & De Vries, G. J. (2013). Fragmentation, incomes and jobs: an analysis of European competitiveness. Economic policy, 28(76), 613-661. [In Persian]
United Nations Conference on Trade and Development (UNCTAD), (2016). Key Indicators and Trends in International Trade 2016, 28-30.
URL:https://unctad.org/system/files/officialdocument/ditctab2016d3_en. pdf
World Bank. (2020). Trading for Development in the Age of Global Value Chains, World Development Report 2020. 293.
World Trade Organization. (2019). World trade report 2019: The future of services trade. World Trade Organization. 232.
Zhong, S., & Su, B. (2021). Investigating ASEAN’s Participation in Global Value Chains: Production Fragmentation and Regional Integration. Asian Development Review, 38(02), 159-188.