Document Type : Research Paper

Author

Ph.D. in Monetary Economics, Tabriz University, Tabriz, Iran

Abstract

 This study examines how real commodity prices affect foreign exchange market pressure (EMP) in resource-exporting countries using a Panel Smooth Transition Regression (PSTR) approach. Exchange market pressure, characterized by excess demand or supply of domestic currency, often requires monetary policy intervention to stabilize currency values. This research specifically investigates the relationship between EMP and real prices of four commodity categories: food, metals, energy, and raw materials.
Using data from 1990-2022, we first calculated the EMP index using an independent model method. Our findings reveal the non-linear nature of exchange market pressure, with studied countries experiencing continuous fluctuations between appreciation and depreciation pressures throughout the period, never reaching a pressure-free equilibrium.
The PSTR model results demonstrate that real commodity prices have a significant indirect effect on exchange market pressure across the studied countries. The real price index shows a strengthening effect on market pressure in both regimes for all exporting countries, with food-exporting nations particularly exhibiting positive and significant pressure effects across both regimes. Our findings indicate that monetary authority intervention is necessary across all four country groups to achieve target exchange rates and mitigate exchange market pressure.
These results have important implications for monetary policy in resource-exporting countries, suggesting the need for active management of exchange market pressure in response to commodity price fluctuations.
Introduction
The collapse of the Bretton Woods fixed exchange rate system marked a fundamental shift in international financial architecture, leading to the emergence of floating, fixed, and intermediate exchange rate systems (Jalal, 2019). Fixed exchange rates encompass currency unions, where one country adopts another's currency or joins a broader monetary union. Floating exchange rates can be either free or managed, with central banks intervening to moderate adverse fluctuations without committing to specific exchange rate levels. Intermediate systems include fixed rates, crawling pegs, currency devaluation, and various hybrid arrangements - all involving central bank intervention to mitigate pressure on domestic currency. Fisher (2001) documents this evolution, noting that countries employing intermediate exchange rates decreased from 98 in 1992 to 63 in 1999, though a significant number maintained these systems.
Exchange rates serve as crucial predictive variables for commodity market movements, offering insights that simple time series models cannot capture and necessitating analysis through comprehensive, mixed-data approaches (Ferraro et al., 2015). As a fundamental indicator of international competitiveness, exchange rates significantly influence national trade and economic performance. Exchange rate fluctuations both reflect and perpetuate economic instability, potentially undermining overall economic performance. Research in developing economies suggests that unmanaged structural changes, combined with inconsistent monetary and fiscal policies, create disparities between actual and equilibrium exchange rates.
While existing literature has predominantly focused on oil price fluctuations' impact on exchange rates in oil-exporting nations, this study addresses a critical research gap by examining how real commodity price index fluctuations affect foreign exchange market pressure. The need to understand exchange rate dynamics and currency market pressure remains crucial for economic policymaking and market stability. Previous domestic studies have largely employed linear models to evaluate factors affecting currency market pressure. However, given the inherently non-linear nature of currency market pressure, non-linear analytical approaches are necessary for more accurate assessment.
This study aims to examine the non-linear relationship between real commodity prices and foreign exchange market pressure across major commodity-exporting countries, categorized into four groups: energy, metals, food, and raw materials exporters. Using a panel smooth transition regression approach for the period 1990-2022, this research extends beyond traditional variables like oil, trade, and GDP to investigate the understudied impact of real commodity price fluctuations on exchange market dynamics.
Methods and Material
The Panel Smooth Transition Regression (PSTR) model is an extension of the standard panel data framework, characterized by two limiting regimes and a transition function. The basic model is defined by equation (1):
   Results and Discussion
The first step in estimating a soft transition regression model involves testing the null hypothesis of model linearity against the alternative hypothesis that the model includes at least one transition variable. The results of Wald's Lagrange Multiplier (LMw), Fisher's Lagrange Multiplier (LMf), and the Likelihood Ratio (LR) tests confirm, at the 5% significance level, the presence of a soft transition regression model (PSTR) with at least one regime. These findings strongly support the non-linear relationship between the variables under study.
Subsequently, the residuals were examined to verify the non-linear structure and determine the number of transition functions (𝑟r). This process involves testing the null hypothesis of a single soft transition function against the alternative hypothesis of at least two transition functions. If the null hypothesis is rejected, additional hypotheses are tested sequentially (e.g., two functions vs. three functions) until the null hypothesis is accepted. Ultimately, a soft transition regression model with one transition function, corresponding to a two-regime structure, was selected for the analysis.
For food and raw material-exporting countries, the estimated parameters of the two-regime PSTR model reveal the following:
(a)Food-Exporting Countries:
Slope Parameter: 3.594 (indicating the speed of transition between regimes).
Threshold Value: 6.765 for the real food price index.
When the food price index equals 6.765, the relationship between the food price index and currency market pressure changes. If the index exceeds 6.765, the model transitions to the second regime at a transition speed of 3.594. Conversely, if the index falls below this threshold, the first regime applies.
(b) Raw Material-Exporting Countries:
Slope Parameter: 0.876.
Threshold Value: 8.302 for the real raw material price index.
For these countries, when the raw material price index reaches 8.302, a regime change occurs. If the index exceeds this threshold, the model transitions to the second regime at a speed of 0.876. If it remains below the threshold, the first regime applies.
The results highlight the non-linear dynamics of the relationship between real price indices and currency market pressure. The coefficients of variables vary with the transition variable's value (price index) and slope parameters, differing across countries and over time. These findings underscore the need for country-specific and time-sensitive policy interventions to manage currency market pressures effectively.
Conclusion
This study analyzed the impact of real prices for food, raw materials, metals, and energy on foreign exchange market pressure (EMP) in exporting countries during the period 1990–2022, using the soft transition regression (PSTR) approach. The findings reveal significant and varied effects across different export categories and regimes, highlighting the non-linear nature of these relationships:

Metal-Exporting Countries:

The real price index of metals negatively impacts currency market pressure in both regimes.
However, the trade balance level exerts a positive influence on EMP in both the linear and non-linear regimes.

Energy-Exporting Countries:

The real price index of energy strengthens EMP in both regimes, indicating heightened sensitivity of currency markets to energy price fluctuations.
The trade balance level exerts a negative effect on EMP, demonstrating its stabilizing role in both linear and non-linear contexts.

Food-Exporting Countries:

The real food price index has a positive and significant effect on EMP in both regimes, reflecting increased market pressure with rising food prices.
Net foreign assets also contribute positively and significantly to EMP in both linear and non-linear regimes.
In contrast, the trade balance equilibrium level mitigates EMP in both regimes.
The Balassa-Samuelson effect is found to significantly influence EMP, underscoring the role of productivity differentials in currency market pressures.

Raw Material-Exporting Countries:

Price indices and the trade balance level negatively and significantly affect EMP in both regimes, suggesting that higher raw material prices and stronger trade balances alleviate market pressures.
Net foreign assets exhibit a dual effect: positively impacting EMP in the first regime but negatively and significantly affecting it in the second regime.



The real price index of goods and the Balassa-Samuelson effect exert positive and significant influences on EMP in both linear and non-linear regimes.

The findings emphasize the importance of tailored monetary and fiscal policies in addressing foreign exchange market pressures. For instance:
-Policymakers in metal-exporting countries should focus on trade balance optimization to counter EMP despite price fluctuations.
-In energy-exporting countries, stabilizing energy prices and enhancing the trade balance are critical to managing EMP effectively.
-For food-exporting countries, mitigating the adverse effects of rising food prices and leveraging net foreign assets can stabilize currency markets.
-Raw material-exporting countries should consider balancing price dynamics and trade balances while accounting for the dual role of net foreign assets in EMP.

Keywords

آرمن، سید عزیز.، شهریور، بهاره و بابعالی، وحید. (1393). بررسی رابطه بلندمدت بین نرخ ارز و قیمت نفت خام در ایران با استفاده از رهیافت آزمون کرانه. رشت، اولین کنفرانس بین‌المللی اقتصاد، مدیریت، حسابداری و علوم اجتماعی.
آقایی،کیومرث.، جباری،امیر و کریمی، محمد. (1386). بررسی منابع کلان اقتصادی ایران با تأکید بر نرخ واقعی ارز طی سال‌های 83-1349. فصلنامه پژوهش‌های اقتصادی، 2، 61-41.
بزازان،فاطمه.، علی نژاد مهربانی،فرهاد و صیدی زاد، مهناز. (1388). بررسی رابطه بلندمدت قیمت نفت خام و نرخ ارز واقعی دلار آمریکا، به دو روش جوهانسون- جوسیلیوس و ARDL . فصلنامه مطالعات اقتصاد انرژی، 6(22) .
 Doi: https://sid.ir/paper/99539/fa
ترکی، لیلا و فراهانی، مریم. (1390). ارزیابی اثر تغییرات قیمت نفت بر بی‌ثباتی نرخ ارز در کشورهای عضو اوپک (2009-1982) . فصلنامه اقتصاد محیط‌زیست و انرژی، 2، 71-59.
ختایی، محمود.، شاه‌حسینی، سمیه و مولانا، حامد. (1386) . بررسی اثر تغییرات درآمدهای نفتی بر نرخ ارز حقیقی. پژوهشنامه اقتصادی، شماره 7: 130-103.
 Doi: https://sid.ir/paper/404796/fa
دایی کرم زاده، سعید، سامتی، مجید و زید یحیایی، شاهین. (1392). بررسی رابطه بین نرخ ارز واقعی و قیمت نفت و وقوع بیماری هلندی در ایران بر اساس رهیافت M-TAR.، اصفهان، اولین همایش الکترونیکی ملی چشم‌انداز اقتصاد ایران با رویکرد حمایت از تولید ملی.
 Doi: https://sid.ir/paper/229027/fa
سجودی، احمد، دائی­ کریم زاده، سعید. (1398). تأثیر تکانه مخارج مصرفی دولت بر حساب‌جاری و نرخ ارز مؤثر واقعی در کشورهای درحال‌توسعه نفتی و غیرنفتی: رهیافت Panel VAR، فصلنامه نظریه­های کاربردی اقتصاد،  (3)، 72-49.
 Doi: https://sid.ir/paper/383673/fa
سلمانی، بهزاد.، بهبودی، داوود و ممی پور،سیاب. (1390). نقش کیفیت نهادی در رابطه نرخ واقعی ارز باقیمت نفت مطالعه موردی:اقتصادهای نفتی. تحقیقات مدل‌سازی اقتصادی، 4.
صادقی شاهدانی، مهدی، صاحب هنر، حامد، طاهری فرد، علی، نخلی، سید رضا(1392). بررسی رابطه بین نرخ ارز و متغیرهای کلان اقتصادی(با استفاده از رهیافت BVAR‌با تابع پیشینSSVS): مطالعه موردی ایران، فصلنامه پژوهشنامه اقتصادی،13(49)، 48-1.
صمدی، سعید.، یحیی‌آبادی، ابوالفضل و معلمی، نوشین. (1388). تحلیل تأثیر شوک‌های قیمتی نفت بر متغیرهای اقتصاد کلان در ایران. پژوهش‌ها و سیاست‌های اقتصادی، 52، 26-5.
عوض پور، فهیمه، یحیی‌آبادی، ابوالفضل و قاسمی، محمدرضا. (1391). تحلیل تأثیر نوسانات قیمت جهانی نفت خام بر نرخ واقعی ارز در کشورهای منتخب عضو اوپک. اولین همایش بین‌المللی اقتصادسنجی، روش‌ها و کاربردها، سنندج، دانشگاه آزاد اسلامی واحد سنندج.
محبوبی،‌هادی، دامن کشیده، مرجان، مومنی وصالیان، هوشنگ، نصابیان، شهریار(1402). تأثیر شاخص‌های کلان اقتصادی بر نوسانات بازده سهام. پژوهش‌های حسابداری مالی و حسابرسی، 15(59).
محبوبی،‌هادی، مومنی وصالیان، هوشنگ، دامن کشیده، مرجان، نصابیان، شهریار(1401). تأثیر پویایی مدیریت ذخایر ارزی و ساختار مداخلات بانک مرکزی بر تثبیت بازار ارز با بکارگیری نظریه گیرتون و روپر. فصلنامه اقتصاد مالی، 16(1).
Doi3. Doi: https://sanad.iau.ir/journal/ecj/Article/691509?jid=691509
مظهری آوا، مریم، فتاحی، شهرام، سهیلی، کیومرث(1398). بررسی عوامل مؤثر بر فشار بازار ارز در کشورهای در حال توسعه و توسعه یافته: رویکرد پنل کوانتایل. فصلنامه پژوهش‌های و سیاست‌های اقتصادی، 92(27)، 256-227. Doi: http://qjerp.ir/article-1-2476-fa.html
ممی­پور، سیاب، جعفری، صغری. (1396). عوامل مؤثر بر فشار بازار ارز در ایران: در چارچوب الگوی مارکوف- سوئیچینگ با احتمال انتقال متغیر، مجله تحقیقات اقتصادی، شماره (2): 456-427. Doi: 10.22059/jte.2017.61860
هاشم‌پور، زینب. (1391). برآورد نرخ حقیقی ارز در کشورهای عمده صادرکننده نفت (2005-1970). برنامه‌ریزی و بودجه،3، 108-85. Doi: http://jpbud.ir/article-1-409-fa.html
Aghaei, K., Jabari, A & Karimi, Mohammad. (2006). Investigating Iran's macroeconomic resources with an emphasis on the real exchange rate during the years 1349-83. Economic Research Quarterly, 2, 41-61. ‎[ In Persian]‎.
Ahmad, A. H., & Moran Hernandez, R. (2013). Asymmetric adjustment between oil prices and exchange rates: Empirical evidence from major oil producers and consumers. Journal of International Financial Markets. Institutions and Money, 27, 306-317.
Ahmad, M. H., & Ping, P. Y. (2014). Modelling Malaysian Gold Using Symmetric and Asymmetric GARCH Models. Applied Mathematical Sciences, 8(17), 817-822.
Aloui, R., Ben Aïssa, M. S., & Nguyen, D. K. (2013). Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach. Journal of International Money and Finance, 32, 719-738.
Amano, R., van Norden, S. (1998). Exchange rates and oil prices. Rev. Int. Econ., 6 (4), 683–694.
Awadpour, F, Yahyaabadi, A & Ghasemi, M. (2011). Analysis of the effect of global crude oil price fluctuations on the real exchange rate in selected OPEC member countries. The first international conference on econometrics, methods and applications, Sanandaj, Islamic Azad University, Sanandaj branch. ‎[ In Persian]‎‏.‏
Basher, S. A., Haug, A. A., & Sadorsky, P. (2012). Oil prices, exchange rates and emerging stock markets. Energy Economics, 34(1), 227-240.
Bazazan, F, Alinejad Mehrabani, F & Seidizad, Mahnaz. (2008). Investigating the long-term relationship between crude oil prices and the real exchange rate of the US dollar, using Johanson-Jusilius and ARDL methods. Quarterly Journal of Energy Economy Studies, 6(22), 117-93. ‎[ In Persian]‎‏.‏
Beckmann, J., & Czudaj, R. (2013). Oil prices and effective dollar exchange rates. International Review of Economics & Finance, 27, 621-636.
Boubakri, S; Guillaumin, C; Silanine, A. (2019). Non-linear relationship between real commodity price volatility and real effective exchange rate: The case of commodity-exporting countries, Journal of Macroeconomics, 60, PP 212–228.
Cashin, P; Céspedes, L; Sahay, R. (2004). Commodity currencies and the real exchange rate. J. Dev. Econ., 75 (1), 239–268.
Chang, H. F., Huang, L. C., & Chin, M. C. (2013). Interactive relationships between crude oil prices, gold prices, and the NT–US dollar exchange rate—A Taiwan study. Energy Policy, 63, 441-448.
Colletaz, G. and Hurlin, C.  (2006). Threshold Effects of the Public Capital Productivity: An International Panel Smooth Transition Approach. Working paper,1/2006, LEO, University d Orleans. 1-39.
Dai Karamzadeh, S, Sameti, M & Zaid Yahyai, ​​Sh. (2012). Investigating the relationship between the real exchange rate and the price of oil and the occurrence of Dutch disease in Iran based on the M-TAR approach., Isfahan, the first national electronic conference on Iran's economic outlook with the approach of supporting national production. ‎[ In Persian]‎‏.‏
Deaton, A., Laroque, G., (1992). On the behavior of commodity prices. Rev. Econ. Stud. 59, 1–23.
Engle, C.M., Nelson, C.M. and Kenneth, D.W. (2007). Exchange rate models are not as bad as you think. NBER Working Paper 13318, National Bureau of Economic Research.
Ferraro, D., Rogoff, K., Rossi, B. (2015). Can oil prices forecast exchange rates? An empirical analysis of the relationship between commodity prices and exchange rates. J. Int. Money Finance, 54 (C), 116–141.
Frankel, J.A. (2010). The Natural Resource Curse: A Survey. HKS Faculty Research Working Paper Series No. RWP10-005.
Fratzscher, M.; Schneider, D. and Van Robays, I. (2014). Oil prices, exchange rates and asset prices. Working Paper Series, No 1689. European Central Bank.
Ghosh, S. (2011). Examining crude oil price–Exchange rate nexus for India during the period of extreme oil price volatility. Applied Energy, 88(5), 1886-1889.
González, A., Teräsvirta, T., van Dijk, D. (2005). Panel Smooth Transition Regression Models. Quantitative Finance Research Centre, University of Technology Research Paper, 165.
González, A., Teräsvirta, T., van Dijk, D., Yukai, Y. (2017). Panel Smooth Transition Regression Models. Department of Economics and Business Economics. Aarhus University CREATES Research Paper 36.
Hashempour, Z. (2011). Estimation of real exchange rate in major oil exporting countries (1970-2005). Planning and Budget, 3, 85-108. ‎[ In Persian]‎‏.‏
Karel Bruna, Quang Van Tran (2020) The central banks’ ability to control variability of money market interest rates: The case of inflation targeting countries, Journal of Economic Behavior & Organization, 176, 384-402
Khataei, M., Shahhosseini, S & Molana, Hamed. (1386). Investigating the effect of changes in oil revenues on the real exchange rate. Economic Journal, No. 7: 103-130. ‎[ In Persian]‎‏.‏
Korhonen, I., & Juurikkala, T. (2009). Equilibrium exchange rates in oil-exporting countries. Journal of Economics and Finance, 33(1), 71-79.
Lizardo, R. A., & Mollick, A. V. (2010). Oil price fluctuations and US dollar exchange rates. Energy Economics, 32(2), 399-408.
Mahboubi, H, Daman Kasheh, M, Momeni, W & Nasabian, Sh (1402). The effect of macroeconomic indicators on the volatility of stock returns. Financial accounting and auditing researches, 15(59), 218-199. ‎[ In Persian]‎‏.‏
Mahboubi, H, Momeni W, Houshang, Daman Kashe, M &  Nasabian, Sh (1401). The effect of the dynamics of foreign exchange reserves management and the structure of the central bank's interventions on the stabilization of the foreign exchange market using Girton and Roper's theory. Financial Economics Quarterly, 16(1), 256-233. ‎[ In Persian]‎‏.‏
Mazhari Ava, M, Fatahi, Sh & Sohaili, K. (2018). Investigating factors affecting the pressure of the foreign exchange market in developing and developed countries: the quantile panel approach. Economic Policy and Research Quarterly, 92(27), 256-227. ‎[ In Persian]‎‏.‏
Meese, R.A., Rogoff, K. (1983). Empirical exchange rate models of the seventies: do they fit out of sample?. J. Int. Econ. 14, 3–24.
Memipour, S & Jafari, S. (2016). Factors influencing foreign exchange market pressure in Iran: in the framework of Markov-switching model with variable transfer probability, Journal of Economic Research, No. (2): 456-427. ‎[ In Persian]‎‏.‏
Morana, C. (2009). On the macroeconomic causes of exchange rate volatility. Int. J. Forecast, 25 (2), 328–350.
Narayan, P., Phan, D., Sharma, S. (2018). Does Islamic stock sensitivity to oil prices have economic significance?. Pac. Basin Finance J. , 53, 497–512.
Narayan, P.K., Sharma, S.S. (2011). New evidence on oil price and firm returns. J. Bank. Finance. 35 (12), 3253–3262.
Reboredo, J. C. (2012). Modelling oil price and exchange rate co-movements. Journal of Policy Modeling, 34(3), 419-440.
Reboredo, J. C., Rivera-Castro, M. A., & Zebende, G. F. (2014). Oil and US dollar exchange rate dependence: A detrended cross-correlation approach. Energy Economics, 42, 132-139.
Rogoff, K.S. and Stavrakeva, V. (2008). The Continuing Puzzle of Short-horizon Exchange Rate Forecasting. NBER Working Paper 14071, National Bureau of Economic Research.
Rossi, B. (2006). Are exchange rates really random walks?. Macroecon. Dyn. 10 (1), 20–38.
Sadeghi Shabhani, M, Sahibhonar, H, Taheri Fard, A & Nakhli, S. (2012). Investigating the relationship between exchange rate and macroeconomic variables (using BVAR approach with SSVS prior function): a case study of Iran, Economic Journal Quarterly, 13(49), 1-48. ‎[ In Persian]‎‏.‏
Salisu, A.A., Swaray, R., Oloko, T.F. (2019). Improving the predictability of the oil-USstock nexus: the role of macroeconomic variables. Econ. Modell, 76 (C), 153–171.
Salmani, B., Behbodi, D & Memipour, S. (2010). The role of institutional quality in the relationship between the real exchange rate and the oil balance, a case study: oil economies. Economic Modeling Research, 4, 121-103. ‎[ In Persian]‎‏.‏
Samadi, S, Yahyaabadi, A & Moalemi, Noushin. (2008). Analysis of the impact of oil price shocks on macroeconomic variables in Iran. Economic research and policies, 52, 5-26. ‎[ In Persian]‎‏.‏
Seyed Aziz.,A., Bahare.,Sh & Babaali, V. (2013). Investigating the long-term relationship between the exchange rate and the price of crude oil in Iran using the edge test approach. Rasht, the first international conference on economics, management, accounting and social sciences. [ In Persian]
Sojodi, A & Dai Karimzadeh, S. (2018). The impact of government consumption spending impulse on current account and real effective exchange rate in oil and non-oil developing countries: Panel VAR approach, Applied Economics Quarterly, (3), 49-72‎. ‎[ In Persian]‎‏.‏
Turhan, I., Hacihasanoglu, E., & Soytas, U. (2013). Oil prices and emerging market exchange rates. Emerging Markets Finance and Trade, 49, 21-36.
Turki, L & Farahani, M. (1390). Evaluating the effect of oil price changes on exchange rate instability in OPEC member countries (1982-2009). Environmental and Energy Economics Quarterly, 2, 59-71. ‎[ In Persian]‎‏.‏
Uddin, G. S., Tiwari, A. K., Arouri, M., & Teulon, F. (2013). On the relationship between oil price and exchange rates: A wavelet analysis. Economic Modelling, 35, 502-507.[1]