Editorial

Authors

1 PhD student in Economic Sciences, AllamehTabatabai University

2 Professor, Faculty of Mathematics & Computer Sciences, Allameh Tabataba`i University

3 Professor, Faculty of Economics, Allameh Tabataba`i University

4 Graduated Student in Planning and Development Economics, Faculty of Economics

5 Ph.D Student, Faculty of Social Science & Economics, Al-Zahra University

Abstract

In this paper, we have used four conventional, Adjusted, Generalized, and Adjusted Generalized RAS methods to update input-output Coefficients (IOC). Conventional and Adjusted RAS methods can only update positive and zero cells and are not sensitive to the existing negative cells like net exports and/or net taxes in Input-Output Tables (IOTs). To solve this drawback, analysts have proposed Generalized RAS (GRAS). This method can update positive, zero and negative cells. From the application view point, this method has two limitations: First, it is more focused on numerical examples rather than real IOTs. Second, extending the GRAS to AGRAS has not been attempted yet. The above limitations will lead us to pose the following questions: is it possible to extend Generalized RAS to Adjusted Generalized RAS? And which method has more statistical errors? For this purpose, we have used the two aggregated survey based IOTs of Iran for the years 1996 and 2001. Our findings show that it is possible to extend GRAS to AGRAS. Whit respect to the measurement of statistical errors, the following results have been obtained:  first, the statistical errors of GRAS is lower than Conventional and ARAS, and the second statistical errors of AGRAS are much lower than corresponding figures in Conventional, ARAS and GRAS.

Keywords

دانشگاه علامه طباطبائی (1381)،طرح تحقیقات ملی محاسبه ماتریس حسابداری اجتماعی سال 1375،گزارش چهارم، مرکز تحقیقات اقتصاد ایران، دانشکده اقتصاد.
فیاضی، محمدتقی (مترجم)(1391)، راهنمای حسابداری ملی، راهنمای جدول داده- ستانده (تهیه و تحلیل)، مرکز پژوهش های مجلس، تهران، ایران.
مرکز آمار ایران (1386)، جدول داده-ستانده سال 1380 .
مشفق، زهرا، گلروز رمضان‌زاده ولیس، افسانه شرکت، محدثه سلیمانیوعلی‌اصغر بانویی، (1393)، «ارزیابی روش‌های RASمتعارف و RASتعدیل شده در بهنگام‌سازی ضرایب داده-ستانده اقتصاد ایران با تأکید بر شقوق مختلف آمارهای برونزا»، فصلنامه پژوهش‌های اقتصادی ایران، شماره 58، زمستان 1392.
میرشجاعیان حسینی، حسین و فرهاد رهبر (1391)، «ارزیابی عملکرد نسبی روشهای غیر پیمایشی بروزرسانی جدول داده-ستانده در فضای اقتصادی ایران»،مطالعات اقتصادی کاربردی ایران، سال اول، شماره2. صص 61-84
Bacharach, M.(1970) Biproportional Matrices and Input-Output Change, Combridge, CambridgeUniversity Press, U.K.
Bregman, L. M. (1967). “Proof of the Convergence of Sheleikhovskii's Method for a Problem with Transportation Constraints”, USSR Computational Mathematics and Mathematical Physics, Vol.7, No.1, PP191-204.
Dietzenbacher, E. and R. E. Miller (2009) “RAS-ing the Transactions or the Coefficients: It Makes no Difference”, Journal of Regional Science, Vol.49, No.3, PP: 555-566.
Huang, W.,S. Kobayashi andH. Tanji(2008)“Updating an Input-Output Matrix with Sign-Preservation: Some Improved Objective Functions and their Solutions”, Economic Systems Research, Vol. 20, No. 1, PP 111-123.
Günlük-Şenesen, G. and J. M. Bates (1988), “Some Experiment with Methods of Adjusting Unbalanced Data Matrices”,Journal of the Royal Statistical Society, Series A (Statistics in Society), Vol. 151, No. 3 .PP 473-490.
Jackson,R.W.and A.T.Murray(2004), “Alternative Input-Output Updating Formulations”, Economic Systems Research,Vol.16,NO. 2,PP 135-156.
Junius,T. and T.Oosterhaven (2003), “The Solution of Updating or Regionalizing a Matrix with both positive and Negative Entries”,Economic Systems Research, Vol.15,PP 87-96.
Lahr, M.and L. de-Mesnard (2004), “Biproportional Techniques in Input–Output Analysis: Table Updating and Structural Analysis”, Economic Systems Research, Vol. 16, No.2, PP 115-134.
Lenzen, M., R. Wood and B. Gallego (2007) “Some Comments on the GRAS Method”,Economic Systems Research, Vol.19, PP461–465.
Lenzen, M., D.D. Moran, A. Geschke and K. Kanemoto (2014), “A Non-Sign Preserving RAS Varient”, Economic Systems Research, Vol. 26, NO.2, PP 197-208.
Lahr, M.L. (1992) “An Investigation into Methods for Producing Hybrid Regional Input-Output Tables”. Unpublished Ph.D. dissertation, Regional Science Department, University of Pennsylvania.
Miller, R.E. and P.D. Blair (2009) Input-Output Analysis: Foundations and Extnesions, Cambridge University Press, U.K.
Okuyama, Y.,Geoffrey J.D. Hewings, Michael Sonis and Philip R. Israilevich(2002), “An Economic Analysis of Biproportional Properties in an Input-Output System”, Journal of Regional Science, Vol.10, No. 42, PP361-387.
Polenske, K.R., W.H. Crown and M.A. Mohr(1986), “A Critical Review of the RAS Literature”, Report 36, Presented at the Strategic Regional Policy, warsaw, Poland, Dec 12, 1984 and the 2nd Soviet American Seminar on Regional Planning, Tillin, USSR, Jan.7.
Sabzalizad Honarvar, S.,M. Jelodari Mamaghani, A.A. Banouei, A. Sherkat, and A. Mokhtari Asl Shouti (2014),“Measurment of Statistical Errors Iteration Algorithms and Convergence Speed in Updating Coefficients and Transaction Matrices”, Journal of Quarterly Iranian Economic Research, NO.57, Special Issue in English (forthcoming )
Stone, R. (1961) Input-Output and National Accounts, Paris, Organization for Economic Cooperation.
Stone, R. and A. Brown (1962) A Computable Model of Ecnonomic Growth: A Programme for Growth, Vol. I, London, Chapman and Hall.
Temurshorv, U., R. E. Miller and M. C. Bouwmeester (2013) “A Note on the GRAS Method”, Economic Systems Research, Vol.25, NO.3, PP 361-367.